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Abstract
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The game used is a Tower Defense game by
Entelect software. It consists of a grid where at
each turn, both agents take an action which
consists of both what building to build and
where on the grid to place it. There Is an
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an observation tensor of shape 8x8x38 Dest fit

(channel at end), containing both map info and
embeddings of non-spatial data. This is the
Input given to each agent.
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