
Genetic Algorithms and Competitive Self-Play in Training Deep
Neural Networks Agents

20786379@sun.ac.za

Abstract

Matthew Baas

Results
In reinforcement learning, agents represented
by deep neural networks are usually trained
via gradient-based learning algorithms. Recent
work, however, has shown that gradient-free
genetic algorithms can competitively train
complex neural networks to accomplish tasks.
In this work, we combine genetic algorithms
with competitive self-play to train an agent with
an autoregressive policy to play a
tower-defense game.

References
1. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley,

K.O. and Clune, J., 2017. Deep neuroevolution: genetic
algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. arXiv preprint
arXiv:1712.06567.

2. Bansal, T., Pachocki, J., Sidor, S., Sutskever, I. and
Mordatch, I., 2017. Emergent complexity via multi-agent
competition. arXiv preprint arXiv:1710.03748.

3. Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A.A., 2017,
February. Inception-v4, inception-resnet and the impact of
residual connections on learning. In AAAI (Vol. 4, p. 12).

Methods
Genetic algorithm
● Initialize population of models and a queue

of reference bots
● For each generation,

○ Sample reference agent at random from
reference agent queue

○ Play collective rollout of all agents in
population (each against the same
reference agent) to determine total
discounted rewards for each agent

○ Truncate population to a few of the
agents with the highest rewards

○ Evaluate truncated population for
several more episodes to find true best
agent at current generation

○ Repopulate the agents by mutating the
best agents

● Every generation pop an agent off the
reference agent queue, and push one of
the better agents at the current generation
to the queue.

Mutation algorithm
Given a deep neural network parameterized by
a vector θ, a mutated network is produced by
adding gaussian noise to θ:

Model Architecture

The game used is a Tower Defense game by
Entelect software. It consists of a grid where at
each turn, both agents take an action which
consists of both what building to build and
where on the grid to place it. There is an
in-game economy, with some buildings acting
as defences, ‘income-generators’, or offensive
structures. The goal is to reduce the
opponent’s base’s life to 0 and agents can only
build on their side of the grid. An example a
4x8 map with indicated grid coordinates and
bases:

Game Data

Since the building must first be chosen before
knowing what spatial actions are available, an
autoregressive style policy π is used:

Where a and s is the full action and state,
respectively.

So the following is performed in order:
1. The agent infers the logits for the buildings

and then samples from that distribution to
decide on what to build.

2. The sampled action is then embedded in a
one-hot vector and broadcast over the width
and height of the spatial information.

3. The agent then, using the embedded base
action and other spatial data, infers the logits
for the coordinates and the chosen
coordinate is taken as a sample from this
distribution.

Where σ is a hyperparameter to scale the
noise. For a network with ~2.1 million
parameters, we found σ = 0.0021 to be the
best fit.

The model consists of a base network, which
processes the observation tensor into a state
embedding, which is then used by the
non-spatial action network and spatial action
network to infer the two actions for each step.

The architecture of each network is as follows:

Policy Representation

Preprocessing
All the game information is processed to give
an observation tensor of shape 8x8x38
(channel at end), containing both map info and
embeddings of non-spatial data. This is the
input given to each agent.

To preserve spatial information, a 1x1
convolution is used on the final stack of
convolution channels and then flattened to
obtain the logit distribution for the coordinates.

Remarks:
● All activations are

relu except for the
final dense layers.

● The agents in the
population do not
share parameters.

● There is no dilation
for the conv layers.

● The agent’s reward
was annealed from
the provided
in-game score at
the beginning of
training to a binary
win/lose reward at
the end.

Conclusions

Training was done with the following parameters:

● Agent elo steadily increases during training,
but improvement appears to diminish later in
training.

● Agent strategy becomes more refined over
training, with lower variance in elo and
episode lengths.

Reference bot ELO

At the end, agent checkpoints from several
generations were evaluated via a round-robin
matchup to generate standard ELO scores.

Agents and reference bot each
generation maintain balanced
win/loss ratio, yielding stable
training.

● Genetic algorithms can be combined with
self-play to achieve convincing results in training
a complex network to play a moderately
complex game.

● Achieving stability and low-variance in training
with genetic self-play is non-trivial and requires
additional methods to perform well.

● Genetic algorithms can successfully train agents
with autoregressive policy representations.

Future Work
● Compare results with baseline deep RL training

methods.
● Experiment with more compute resources with

bigger populations and more generations.
● Explore effects of training different network sizes

