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Abstract

Matthew Baas

Results
In reinforcement learning, agents represented 
by deep neural networks are usually trained 
via gradient-based learning algorithms. Recent 
work, however, has shown that gradient-free 
genetic algorithms can competitively train 
complex neural networks to accomplish tasks. 
In this work, we combine genetic algorithms 
with competitive self-play to train an agent with 
an autoregressive policy to play a 
tower-defense game. 
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Methods
Genetic algorithm
● Initialize population of models and a queue 

of reference bots
● For each generation, 

○ Sample reference agent at random from 
reference agent queue

○ Play collective rollout of all agents in 
population (each against the same 
reference agent) to determine total 
discounted rewards for each agent

○ Truncate population to a few of the 
agents with the highest rewards

○ Evaluate truncated population for 
several more episodes to find true best 
agent at current generation

○ Repopulate the agents by mutating the 
best agents

● Every generation pop an agent off the 
reference agent queue, and push one of 
the better agents at the current generation 
to the queue.

Mutation algorithm
Given a deep neural network parameterized by 
a vector θ, a mutated network is produced by 
adding gaussian noise to θ:

Model Architecture

The game used is a Tower Defense game by 
Entelect software. It consists of a grid where at 
each turn, both agents take an action which 
consists of both what building to build and 
where on the grid to place it. There is an 
in-game economy, with some buildings acting 
as defences, ‘income-generators’, or offensive 
structures. The goal is to reduce the 
opponent’s base’s life to 0 and agents can only 
build on their side of the grid. An example a 
4x8 map with indicated grid coordinates and 
bases:

Game Data

Since the building must first be chosen before 
knowing what spatial actions are available, an 
autoregressive style policy π is used:

Where a and s is the full action and state, 
respectively. 

So the following is performed in order:
1. The agent infers the logits for the buildings 

and then samples from that distribution to 
decide on what to build.

2. The sampled action is then embedded in a 
one-hot vector and broadcast over the width 
and height of the spatial information.

3. The agent then, using the embedded base 
action and other spatial data, infers the logits 
for the coordinates and the chosen 
coordinate is taken as a sample from this 
distribution.

Where σ is a hyperparameter to scale the 
noise. For a network with ~2.1 million 
parameters, we found σ = 0.0021 to be the 
best fit.

The model consists of a base network, which 
processes the observation tensor into a state 
embedding, which is then used by the 
non-spatial action network and spatial action 
network to infer the two actions for each step.

The architecture of each network is as follows:

Policy Representation

Preprocessing
All the game information is processed to give 
an observation tensor of shape 8x8x38 
(channel at end), containing both map info and 
embeddings of non-spatial data. This is the 
input given to each agent.

To preserve spatial information, a 1x1 
convolution is used on the final stack of 
convolution channels and then flattened to 
obtain the logit distribution for the coordinates.

Remarks:
● All activations are 

relu except for the 
final dense layers.

● The agents in the 
population do not 
share parameters.

● There is no dilation 
for the conv layers.

● The agent’s reward 
was annealed from 
the provided 
in-game score at 
the beginning of 
training to a binary 
win/lose reward at 
the end.

Conclusions

Training was done with the following parameters:

● Agent elo steadily increases during training, 
but improvement appears to diminish later in 
training.

● Agent strategy becomes more refined over 
training, with lower variance in elo and 
episode lengths.

Reference bot ELO

At the end, agent checkpoints from several 
generations were evaluated via a round-robin 
matchup to generate standard ELO scores.

Agents and reference bot each 
generation maintain balanced 
win/loss ratio, yielding stable 
training.

● Genetic algorithms can be combined with 
self-play to achieve convincing results in training 
a complex network to play a moderately 
complex game. 

● Achieving stability and low-variance in training 
with genetic self-play is non-trivial and requires 
additional methods to perform well. 

● Genetic algorithms can successfully train agents 
with autoregressive policy representations.

Future Work
●  Compare results with baseline deep RL training 

methods.
● Experiment with more compute resources with 

bigger populations and more generations.
● Explore effects of training different network sizes


