# Genetic Algorithms and Competitive Self-Play in Training Deep Neural Networks Agents

Matthew Baas 20786379@sun.ac.za

| Abstract                                                                                                                               | Methods                                                                                                                                    | Results                                                                                 |                 |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------|
| In reinforcement learning, agents represented                                                                                          | Genetic algorithm                                                                                                                          | Training was done with the follo                                                        | wing parameters |
| by deep neural networks are usually trained                                                                                            | <ul> <li>Initialize population of models and a queue of reference bots</li> <li>For each generation,</li> </ul>                            | Training Parameters<br>Generations                                                      | 480             |
| via gradient-based learning algorithms. Recent                                                                                         |                                                                                                                                            | Population size                                                                         | 88              |
| work, however, has shown that gradient-free                                                                                            |                                                                                                                                            | Truncation size                                                                         | 8               |
| genetic algorithms can competitively train                                                                                             | <ul> <li>Sample reference agent at random from</li> </ul>                                                                                  | Mutation scalar o                                                                       | 0.0021          |
| complex neural networks to accomplish tasks.                                                                                           | reference agent queue                                                                                                                      | Additional episodes for truncated population                                            | 8               |
| In this work, we combine genetic algorithms<br>with competitive self-play to train an agent with<br>an autoregressive policy to play a | <ul> <li>Play collective rollout of all agents in<br/>population (each against the same<br/>reference agent) to determine total</li> </ul> | At the end, agent checkpoints from several generations were evaluated via a round-robin |                 |

an autoregressive policy to play a tower-defense game.

## Game Data

The game used is a Tower Defense game by Entelect software. It consists of a grid where at each turn, both agents take an action which consists of both *what building to build* and *where on the grid to place it*. There is an in-game economy, with some buildings acting as defences, 'income-generators', or offensive structures. The goal is to reduce the opponent's base's life to 0 and agents can only build on their side of the grid. An example a 4x8 map with indicated grid coordinates and bases:

| Player A<br>Home<br>Base | 0,0 | 1,0 | 2,0 | 3,0 | 3,0 | 2,0 | 1,0 | 0,0 | Player B     |
|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|--------------|
|                          | 0,1 | 1,1 | 2,1 | 3,1 | 3,1 | 2,1 | 1,1 | 0,1 | Home<br>Base |
|                          | 0,2 | 1,2 | 2,2 | 3,2 | 3,2 | 2,2 | 1,2 | 0,2 |              |
|                          | 0,3 | 1,3 | 2,3 | 3,3 | 3,3 | 2,3 | 1,3 | 0,3 |              |

#### Preprocessing

- discounted rewards for each agent
- Truncate population to a few of the agents with the highest rewards
- Evaluate truncated population for several more episodes to find true best agent at current generation
- Repopulate the agents by mutating the best agents
- Every generation pop an agent off the reference agent queue, and push one of the better agents at the current generation to the queue.

#### Mutation algorithm

Given a deep neural network parameterized by a vector  $\boldsymbol{\theta}$ , a mutated network is produced by adding gaussian noise to  $\boldsymbol{\theta}$ :

$$\theta_{new} = \theta + \sigma \cdot \mathcal{N}(0, 1)$$

Where  $\sigma$  is a hyperparameter to scale the

#### matchup to generate standard ELO scores.

#### ELO rating of best agent vs generation of training



- Agent elo steadily increases during training, but improvement appears to diminish later in training.
- Agent strategy becomes more refined over training, with lower variance in elo and episode lengths.



Agents and reference bot each

generation maintain balanced

win/loss ratio, yielding stable

training.



All the game information is processed to give an observation tensor of shape 8x8x38 (channel at end), containing both map info and embeddings of non-spatial data. This is the input given to each agent.

## Policy Representation

Since the building must first be chosen before knowing what spatial actions are available, an autoregressive style policy  $\pi$  is used:

 $\pi(a|s) = \pi(building|s) \cdot \pi(coordinate|building, s)$ 

Where *a* and *s* is the full action and state, respectively.

So the following is performed in order:

- The agent infers the logits for the buildings and then samples from that distribution to decide on what to build.
- The sampled action is then *embedded* in a one-hot vector and *broadcast over the width and height of the spatial information*.
   The agent then, using the embedded base action and other spatial data, infers the logits for the coordinates and the chosen coordinate is taken as a sample from this distribution.

noise. For a network with ~2.1 million parameters, we found  $\sigma$  = 0.0021 to be the best fit.

## Model Architecture

The model consists of a base network, which processes the observation tensor into a state embedding, which is then used by the non-spatial action network and spatial action network to infer the two actions for each step.



The architecture of each network is as follows:

es

## Conclusions

- Genetic algorithms can be combined with self-play to achieve convincing results in training a complex network to play a moderately complex game.
- Achieving stability and low-variance in training with genetic self-play is non-trivial and requires additional methods to perform well.
- Genetic algorithms can successfully train agents with autoregressive policy representations.



To preserve spatial information, a 1x1 convolution is used on the final stack of convolution channels and then flattened to obtain the logit distribution for the coordinates.

|                 | Base            |        |  |  |
|-----------------|-----------------|--------|--|--|
| Туре            | Channels/units  | Filter |  |  |
| conv            | 32              | 32 3x3 |  |  |
| conv            | 32              | 3x3    |  |  |
| conv            | 64              | 3x3    |  |  |
| inception-4 res | net A module    |        |  |  |
| inception-4 res | net A module    |        |  |  |
|                 |                 |        |  |  |
| Non-            | spatial network |        |  |  |
| Туре            | Channels/units  | Filter |  |  |
| inception-4 res | net B module    |        |  |  |
| inception-4 res | net B module    |        |  |  |
| conv            | 8               | 1x1    |  |  |
| dense           | 256             |        |  |  |
| dense           | 6               |        |  |  |
| sample catego   | rical           |        |  |  |
|                 |                 |        |  |  |
| Sp              | atial network   |        |  |  |
| Туре            | Channels/units  | Filter |  |  |
| conv            | 64              | 64 3x3 |  |  |
| inception-4 res | net B module    |        |  |  |
| inception-4 res | net B module    |        |  |  |
| conv            | 1               | 1x1    |  |  |
| sample catego   | rical           |        |  |  |

**Remarks**: • All activations are relu except for the final dense layers. • The agents in the population do not share parameters. There is no dilation for the conv layers. The agent's reward was annealed from the provided in-game score at the beginning of training to a binary win/lose reward at

the end.

#### Future Work

- Compare results with baseline deep RL training methods.
- Experiment with more compute resources with bigger populations and more generations.
- Explore effects of training different network sizes

## References

- Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O. and Clune, J., 2017. Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. *arXiv preprint arXiv:1712.06567*.
- Bansal, T., Pachocki, J., Sidor, S., Sutskever, I. and Mordatch, I., 2017. Emergent complexity via multi-agent competition. *arXiv preprint arXiv:1710.03748*.
- Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A.A., 2017, February. Inception-v4, inception-resnet and the impact of residual connections on learning. In *AAAI* (Vol. 4, p. 12).