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Abstract

English

Voice conversion is the task of converting an utterance spoken by a source speaker so that
it appears to be said by a different target speaker, while retaining the linguistic content
of the utterance. However, current voice conversion systems fail to be practically useful
in many scenarios due to their failure to satisfy all requirements necessary for practical
use. Namely, they need to (i) be trainable without access to parallel data, (ii) work in a
zero-shot setting where both the source and target speakers are unseen during training,
(iii) retain quality when trained on little data and (iv) run in real time or faster.

Recent techniques fulfil some of these requirements, but not all. This report aims to
profile recent voice conversion systems and extend recent voice conversion models to satisfy
all four requirements. We specifically propose the StarGAN-ZSVC model, which extends
recent generative adversarial network (GAN) based models to work in the zero-shot setting
by conditioning it on a speaker embedding. We compare StarGAN-ZSVC against other
models in a low-resource setting, performing both subjective and objective comparisons.
Our comparisons confirm that no existing model satisfies all aforementioned conditions,
while the proposed StarGAN-ZSVC does.

Afrikaans

Stemomskakeling behels die omskepping van ’n spraaksein wat deur ’n bronspreker gepro-
duseer word sodat dit dit voorkom asof dit deur ’n ander teikenspreker gesê word, terwyl
die taalinhoud van die oorspronklike sein behou word. Meeste bestaande stemomskake-
lingstelsels is nie gepas vir praktiese gebruik nie, omdat dit nie voldoen aan vier spesifieke
vereistes nie. ’n Praktiese stelsel moet (i) afgerig kan word sonder parallelle data, (ii)
gebruik kan word in ’n nulskootomgewing waar nie die bron- of teikenspreker gesien word
gedurende afrigting nie, (iii) hoë kwaliteit behou wanneer dit op min data afgerig word, en
(iv) intyds of vinniger kan hardloop.

Onlangse tegnieke voldoen aan sommige van hierdie vereistes, maar nie almal nie.
Hierdie verslag het ten doel om die onlangse stemomskakelingstelsels te ondersoek en uit
te brei om aan al vier vereistes te voldoen. Ons stel spesifiek die StarGAN-ZSVC model
bekend, wat modelle gebasseer of generatiewe adversêre netwerke (GANe) uitbrei om in die
nulskootopstelling te werk. Ons vergelyk StarGAN-ZSVC met ander stemomskakelingsteg-
nieke in ’n laehulpbronomgewing. Ons eksperimente bevestig dat geen bestaande model
aan al die bogenoemde vereistes voldoen nie, terwyl die voorgestelde StarGAN-ZSVC wel
doen.
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Chapter 1

Introduction
Voice conversion (VC) is a speech processing task where speech by a source speaker
is transformed into speech that appears to be spoken by a desired target speaker while
preserving linguistic content (which words are spoken). VC is a subfield of speech processing
and has seen significant advances in recent years, in part due to the increasing research
focus brought about by several VC competitions [1, 2]. Some techniques are beginning
to achieve near human-level quality in conversion outputs. This progress builds off the
advances in speech processing in the last decade with the rise of large deep neural networks
(DNNs) [3] together with more recent techniques introduced in image-to-image translation
models making use of generative adversarial networks (GANs) [4].

However, the majority of such progress has been confined to fairly academic settings
which have limited usefulness in practice due to their failure to satisfy several requirements
of practical VC systems, particularly in low-resource settings where there is limited training
data. The work of this report attempts to address this shortfall by first formalizing the
requirements for what it means for a VC system to be ‘practical’. Then the report goes
on to characterize several recent VC systems in terms of their performance and which
requirements they fulfill. Upon finding that no systems fulfill all requirements, we go on
to develop a new VC technique for real-time zero-shot voice conversion in low-resource
settings and then perform a series of experiments to compare the performance of our
proposed model to existing VC systems.

1.1. Motivation
A fast, human-level VC system has important applications in several industries. First,
it can be utilized for the preservation of privacy and identity protection [5], or for voice
mimicry and disguise [6]. Voice mimicry and alteration is most useful in the entertainment
and gaming industry, where a company could use a single actor to record several roles.
For example, a game with 100 non-player characters that have similar lines would need
to hire 100 different voice actors to record each line, whereas if a practical VC system is
available they could instead hire only a handful and use VC to generate unique dialog for
the remaining characters, saving significant effort and expense.

VC can also be essential in addressing downstream natural language and speech
processing problems in low-resource contexts where training data is limited: VC could be
used to augment training data by converting the available utterances to novel speakers –
effectively increasing the diversity of training data and improving the quality of the
resulting systems. This entails the promise of increasing the performance and availability
of downstream tasks like automatic speech recognition and text-to-speech for speakers of
under-served and low-resource languages, which are acutely prevalent in South Africa.

Thus the motivation for this report is to provide a step toward realizing some of these
potential applications of a practical VC system. In particular, this work aims to bridge the
gap between the recent high performing techniques for VC and their proposed applications

1



1.2. Problem statement and objectives 2

by attempting to profile and overcome some of the key limitations that prevent their
practical use.

1.2. Problem statement and objectives
This work aims to produce a practical VC system. Such a goal is under-specified and is
thus expanded into two separate problems. The first of which is to define what it means
for a VC system to be practical. Based on the proposed use cases of VC, we can derive
four requirements that a practical VC system must satisfy: a practical VC system should

• be trainable without access to parallel data: the VC system should not need paired
source and target utterances with the same linguistic content during training (ex-
panded in Section 2.1). Parallel data is difficult to collect in general, and even more
so for low-resource languages.
• work in zero-shot settings: the VC system should be able to perform VC for source

and target speakers unseen during training. Without this requirement, a system
would need to be retrained whenever speech from a new speaker is desired.
• retain reasonable quality output in low-resource settings: when trained on little data

(< 30 minutes of audio), the VC system should maintain its output quality.
• run at least in real-time: the system needs to be able to convert one second of audio

in less than one second. For data augmentation in particular, having the system run
as fast as possible is essential for it to be practical in the training of a downstream
speech model.

The second problem is to design, develop, and test such a practical VC system. This
report proposes such a practical VC system and confirms its effectiveness and practicality
by comparing it to existing VC methods.

1.3. Scope and contributions
This report accomplishes two related tasks. First, it characterizes several VC techniques in
terms of their performance and practicality (how well they satisfy the practical requirements
defined in Section 1.2). Second, after realizing that no existing VC systems satisfy all
the requirements, we develop a new VC technique by combining GAN methods from the
StarGAN-VC & StarGAN-VC2 [7,8] architectures with a speaker embedding technique
introduced with the recent AutoVC model [9]. This new model is capable of performing
zero-shot VC and is thus termed StarGAN-ZSVC.

StarGAN-ZSVC achieves zero-shot prediction by using a separate neural network to
generate speaker embeddings for potentially unseen speakers; these embeddings are then
used to condition the model at inference time. We go on to compare the VC techniques
profiled to one another and to StarGAN-ZSVC, showing that our new method performs
better than simple baseline models and similar or better than the recent AutoVC zero-shot
voice conversion approach across a range of objective and subjective evaluation metrics.
More specifically, we observe that it satisfies all the practicality objectives of Section 1.2
and gives similar or better performance in all zero-shot settings considered, and does so
roughly 6 times faster than AutoVC. The proposed StarGAN-ZSVC system, as set out in
this report, has also been described in a more condensed paper titled StarGAN-ZSVC:
Towards zero-shot voice conversion in low-resource contexts. This paper has been accepted
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for publication and presentation at the South African Conference for Artificial Intelligence
Research 2020 [10].

To truly assess the practicality of a VC system, however, would actually require us
to perform the downstream activities mentioned in Section 1.1 and check whether the
performance has improved or if the task is now possible. For example, one might train a
low-resource automatic speech recognition (ASR) model with and without using StarGAN-
ZSVC for data augmentation and compare its performance. Since this would drastically
expand the scope of the project, this is not performed and we limit ourselves to developing
and assessing VC systems in isolation from their downstream applications.

1.4. Ethical considerations
Developing a practical real-time VC system has the potential to assist with both positive
and negative social actions. For example, the positive applications of VC for voice mimicry
and disguise [6] could potentially also be misused to aid in identity fraud. Since a practical
real-time VC system has not existed before, there is little research into the positive and
negative ethical and social considerations associated with practical use of VC in society.
We will assess and develop VC systems in isolation in the well established field of voice
conversion, however we also note that additional research is required to assess ethical and
social considerations enabled by downstream applications of VC systems.

1.5. Report overview
This report is structured as follows. In the next chapter, a literature review is conducted
to introduce the relevant topics and notation when dealing with VC systems. This chapter
continues by providing a description of domain techniques used with VC systems and
various classes of VC models.

Then, Chapter 3 gives a detailed description of several traditional and recent VC
systems and their capabilities. The chapter continues on with a motivation, description,
and detailed design of our new proposed model StarGAN-ZSVC. Chapter 4 proceeds to
discuss and define precisely how each model is prepared, trained, and compared to one
another, together with details about the input dataset and preprocessing performed.

Finally, Chapter 5 presents and discusses the results of several objective and subjective
evaluations performed on the set of models discussed in Chapter 3 to assess the performance
of the considered models and confirm that the proposed StarGAN-ZSVC satisfies all
practicality requirements defined in Section 1.2. The report is concluded in Chapter 6,
providing a summary of results, conclusions, and possible avenues for future work.



Chapter 2

Literature Review
Before we can investigate prominent VC systems, we need to outline the background
theory necessary to reason about VC and the techniques typical VC systems employ. This
chapter begins with definitions of specific terms used in voice conversion, and continues
on to outline the general form of a VC system. Then, a summary of various pieces of
domain knowledge important for VC systems are given in Section 2.3. Finally, we outline
the general classes of VC systems in terms of the methods they use in Section 2.4. The
information in this chapter is laid out so that by Chapter 3, the idea behind each model
should appear imminently clear to the reader.

2.1. Terminology
Within the VC literature one frequently encounters terms such as ‘source speaker’, ‘one-
to-one model’, and ‘parallel/non-parallel’ data. These terms have evolved from the VC
literature, with some only being introduced recently as model capabilities have improved.
To ensure that information presented in the rest of this report is based on a solid foundation,
we concretely define several of these terms based on their usage in the literature [11]:
• Utterance: the unit of data for a VC system referring to a single recording of a

person speaking intelligible speech into a microphone. In practice these recordings
are between 2-7 seconds and are encoded in digital format (e.g as a .wav file). In
referring to an utterance, one may either be referring to the time-domain waveform or
some processed representation of the waveform (such as a spectrogram), depending
on context.
• Source/target speaker: in VC, the source speaker is the identity of the person

speaking the source utterance, while the target speaker is the desired identity for
the VC target. I.e. the VC system should aim to transform an utterance spoken by
a source speaker into one recognized as being spoken by a desired target speaker.
• Parallel and non-parallel data: parallel data refers to pairs of source-target

utterances, where the model designer has access to an utterance from both the
source and target speaker containing the same linguistic content (spoken words).
Non-parallel data is the converse, where each data item is an individual utterance by
a source speaker with no such paired utterance by a target speaker.
• One-to-one and many-to-many: a VC model is a one-to-one model if it can

only convert from speaker A to speaker B, while a VC model is many-to-many if it
can convert an utterance spoken by any speaker in a set of source speakers to any
speaker in a set of target speakers.
• Zero-shot and few-shot: a VC model has zero-shot capability if it can perform

VC when no utterances from the source or target speaker are seen during training of
the model, while a VC model has few-shot capability if it can perform VC when only
a handful (typically less than 5) utterances from the source or target speaker are
seen during training of the model.
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2.2. Voice conversion systems
The ultimate goal of a VC system is to convert an input utterance by a source speaker into
an output utterance by a target speaker. The particular methods used by different VC
systems to achieve this vary widely, and there is very little standard notation within the
existing literature. Despite this, nearly all VC systems share several common structural
elements [11]. To allow us to easily discuss and compare between different VC models,
we need to provide a consistent framework to view these system elements and define a
standard notation. Concretely, most VC systems encountered can be generalized to the
system diagram in Figure 2.1

As in Figure 2.1, a VC system consists of several parts. First, a source utterance
Xsrc is parsed with a feature extraction operation to obtain some meaningful feature
representation of the utterance, Xsrc (note the calligraphy form Xsrc indicates the waveform
which is distinct from the feature representation Xsrc). An utterance X is defined as
a sequence of scalar samples X = [x1, x2, ..., xT ] where each sample xi ∈ R is the i’th
amplitude sample of a T -sample waveform. In most VC systems the feature extractor is a
kind of frequency domain transformation such that Xsrc contains the frequency information
of the time-domain waveform Xsrc with X = [x1,x2, ...,xN ] also a sequence of vectors,
with each vector element xi ∈ Rm as the i’th frame of an N -frame spectrogram.

In parallel, the source and target speaker’s identity are passed through some form of
speaker information extraction, obtaining some kind of meaningful and numerical encoding
of the source speaker, ssrc, and target speaker, strg. This information can take various
forms, but most forms can usually be expressed as some d-dimensional vector, representing
for example a one-hot encoding of the source/target speaker index (from a list of known
speakers). The extraction process for the source and target speakers need not be the same,
but typically are [11].

The representations of the source and target speaker, together with the input utterance
features Xsrc, are given to a certain mapping function which performs the actual conversion.
It returns a feature representation Xsrc→trg that usually exists in the same domain as
Xsrc [12]. Some form of reconstruction is then performed on this converted feature
representation to yield the final time-domain output waveform Xsrc→trg.

Since this functional block takes the coding of an utterance Xsrc→trg and converts
it to an actual voice waveform, it is known as a voice coder, or vocoder. The design
and construction of vocoders typically falls outside of the scope of voice conversion and
comprises an entire field of study in its own right [13–15]. VC systems typically design
the mapping function and speaker information extraction process, and simply choose an
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Source	utterance Converted	utterance
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Figure 2.1: Generalized block diagram of a VC system. Individual VC implementations
define the form and operation of each functional block.
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existing method or system from the literature for feature extraction and vocoding [12].
As an example instance of the block diagram in Figure 2.1, consider a simple one-to-one

model that just pitch shifts the input utterance from the (hard-coded) average pitch of
the source speaker to the (hard-coded) average pitch of the target speaker’s voice. In such
a model, the feature extraction and waveform reconstruction are both identity operations.
The mapping function is just a simple pitch shift operation which only considers the
utterance input and ignores the conditioning speaker information because, being a one-to-
one model, the source and target speaker information is already implicitly present in the
model. Thus the speaker information extraction blocks are also irrelevant (and can be
treated as any arbitrary operation) in such a one-to-one system.

2.3. Relevant methods and techniques
With the basic framework of VC systems established, we will now go on to introduce
several techniques which are highly prevalent in the various functional blocks of Figure 2.1.

2.3.1. Speech representations
We start our discussion with the first block – extracting some feature representation X from
a time-domain utterance X . Aside from trivial representations, such as using an identity
function as in the aforementioned example, feature extraction techniques in the literature
make extensive use of the Fourier transform and frequency domain techniques [11].

Other parametric techniques attempt to build representations of speech by modelling
the voice tract [16], or by modelling the continuous pitch of the utterance [17]. However,
most modern VC systems extract features from the input speech by representing it in the
frequency domain using a variant of the discrete Fourier transform (DFT) [12]. In particular,
the current state-of-the-art VC models represent speech as Mel-scale spectrograms or
Mel-frequency cepstral coefficients together with a pitch contour [1, 12].

Intuitively, the Mel-scale is an alternate non-linear frequency scale that intends to align
with the human perception of frequency [18]. When constructing the short-time Fourier
transform (STFT) using this scale we obtain a Mel-scale spectrogram. As a practical
consideration, VC systems typically use the natural logarithm of the Mel-scale spectrogram
magnitudes – often simply called the ‘Mel-spectrogram’ [12]. The details behind the
Mel-spectrogram used in this project, as well as other typical speech representations, is
given in Appendix C.

Since the field of speech representations is a well defined research area in its own right,
we make the decision to use the same speech representation for all models we construct
in this project – the Mel-spectrogram. Without this limitation, the scope would need to
expand unacceptably to properly cover all well-known speech representation techniques.
We make an exception for StarGAN-VC2 however, because it uses and is specifically
designed to be used with the WORLD vocoder (the workings of which are beyond the
scope of this project).

2.3.2. Deep neural networks
Now we proceed to the techniques used in the mapping function and vocoding blocks
of Figure 2.1. Although non-statistical methods exist, such as a simple pitch shift for
the mapping function, or the WORLD vocoder for the waveform reconstruction [19],
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recent high-performing systems increasingly use deep neural networks (DNNs) for both
the mapping function and vocoder [12].

As a basic formulation of neural networks, a DNN typically refers to a function F (A; θ)
that operates on some defined input A (anything from a tuple to a tensor). The function is
parametrized by a set of variables θ, which typically need to be optimized in some way to
make the function / network output useful results. The functions can usually be expressed
as a sequence of linear matrix operations paired with non-linear element-wise operations
and reshaping operations. Many forms of such functions can actually be shown to, under
certain conditions, approximate any arbitrary function with the Universal Approximation
Theorem [20].

The process of optimizing these parameters θ is known as training the network. There
exist several ways to train networks, but most VC systems are trained in a supervised
fashion because the speaker identity of each utterance is typically known (although a
target converted utterance is not present for non-parallel settings). To train the network, a
scalar loss L is defined to be some function of the network output and any other variables
or external data. The only requirement is that L should be a scalar, and the gradient with
respect to each of the parameters θ should be well defined and smooth everywhere. The
loss is defined so that a lower loss corresponds to a better performing network – i.e. to
optimize the network, the loss should be minimized.

So long these conditions hold, the following method is iteratively repeated to train the
network until the weights converge:
• A set of data items are sampled from the dataset. Again, the type of the data is left

unspecified and can take on any form.
• The loss L is computed using the data items and functions from the DNN architecture.
• The gradient of this loss is taken with respect to the weights, computing ∇θL.
• The network weights are then updated to lower the loss with the update equation:
θt+1 = θt − α m̃1√

m̃2+ε where m̃1 is an exponentially weighted running average of ∇θL
and m̃2 is an exponentially weighted running average of the square of each gradient
∇θL. A small constant ε is added for numerical stability [21].

The update equation given in the final point is actually very general, and can cover a wide
range of different known optimizers by setting the learning rate α, constant ε, and running
average update coefficients. For example, setting the square gradient term m̃2 to never
update and remain zero, ε = 1, and the gradient term m̃1 to always be the latest value
(exponential update coefficient of 1) yields the stochastic gradient descent algorithm!

Typically, most neural approaches for VC are trained using the Adam optimizer, which
follows the update equation shown above with the use of the running average gradient
and square gradient to help smooth training [21]. This method for training DNNs is very
versatile and allows any operation to be used in the network – regardless of non-linearity or
recurrent use of its output as an additional input – so long as it is smoothly differentiable.

2.3.3. Recurrent neural networks
A mel-spectrogram X can be treated both as a sequence of vectors or as a 2D matrix
that can be viewed as an image. There are two layers most often used in DNN-based VC
models – one to best deal with 2D images, and one to deal with sequential data. For
dealing with 2D input images, we use convolutional layers where the coefficients of the
discrete 2D convolution filter are treated as part of the weights θ.

For dealing with sequential data, recurrent neural networks (RNNs) are used. RNNs
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Figure 2.2: GRU and LSTM recurrent cell architectures, showing the operations
performed for each item in a sequence [22, 23]. c is a cell state vector, while h denotes a
hidden state vector. x and y denote the input and output vectors respectively. The GRU
cell only has a hidden state and no cell state. All operations aside from the linear layers
are applied element-wise to their inputs. σ refers to the sigmoid function, and 1− ∗ is
the element-wise operation that maps each input value to one minus that input value.

refer to a category of network layers / functions that process a given sequence by iteratively
performing some function on each item xi in the sequence in order, whereby the function
returns some output and some information for processing of the next item in the sequence.
This latter piece of information is termed the state of the RNN at a particular point in a
sequence, and acts both as an output of the previous step’s function evaluation and an
input to the next step’s function evaluation. This state is initialized in some pre-defined
way for the initial item in the sequence where no previous state exists.

The parameters of the function performed on each sequence item are included in the
weights of the network θ. Although the function performed on each sequence item can
be any arbitrary DNN, two network models are utilized extensively in existing literature:
long-short term memory (LSTM) RNNs [23] and gated recurrent unit (GRU) RNNs [22].
The architectures of both these RNN layers are shown in Figure 2.2. As is seen, the GRU
cell is slightly simpler with only three quarters of the number of linear layers as the LSTM
cell, making it reasonably faster [22].

2.3.4. Common DNN layers
In addition to the recurrent layers just described, several other common sets of operations
– typically collectively called a layer of a DNN – are used. In Figure 2.2, the Linear
layers are the same as those covered in standard undergraduate machine learning courses,
whereby Linear(x) = xW T + b for weight matrix W and bias vector b – both W and b
are included as part of the network parameters θ. The dimensions of the hidden state h
and cell state c vectors are chosen as a design hyperparameter. This choice, together with
the size of the input vector x, determines the shape of each of the linear layer’s weights. If
the input to a linear layer is a tensor of rank greater than 1 (excluding a possible batch
dimension), then the input is assumed to be flattened into a rank-1 tensor (a vector) before
being fed into the linear layer.

Another common set of layers is that of activation functions – non-linear element-wise
functions applied to an input tensor. Common activation functions include the sigmoid
function σ(x), hyperbolic tangent tanh, rectified linear units (ReLU) which clamps the
minimum value of an input at zero [24], and scaled exponential linear units which maps
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negative inputs to smaller and smaller positive inputs [25]. The precise details of each
function are outside the scope of this report, but suffice to say they are typically chosen
based on practical reasons relating to how gradients scale for weights early on in the
computation graph of a network. Regardless of the choice of activation function throughout
the network, so long as they are non-linear the DNN’s generalization ability is guaranteed
by the Universal Approximation Theorem [20].

Furthermore, a random layer called dropout has also gained traction in several DNN
architectures due to its purported ability to reduce overfitting in DNN models. The dropout
layer is straightforward: given an input tensor of arbitrary shape, randomly set each input
to zero with some probability p (a hyperparameter set in model design), and scale the
output tensor to have the same mean and standard deviation as the input tensor [26]. In
some specific applications, the specific entries of a tensor set to zero are made to be in
some way ‘consistent’. For example, a dropout layer in a RNN might ensure that the same
entry is dropped in all of the input vectors xi in a particular training batch [27].

Embedding layers map an input one-hot vector to a specific d-dimensional real-valued
vector, where each d-dimensional vectors is included as part of the trainable network
parameters θ. They are used in some VC systems to get unique floating-point vector
representations of a one-hot speaker vector s.

One final layer that is used in this project is that of the PixelShuffle layer. This layer
intuitively takes in (at least) a rank-3 tensor image, with a width, height, and channels
dimension. The PixelShuffle layer then rearranges the input to upscale the width and
height by some factor, while reducing the number of channels by the square of the upscaling
factor. Without delving into the details, this effect is realized by performing a kind of
‘sub-pixel’ convolution with a stride equal to the inverse of the scaling factor [28]. It is
used in vision models and some VC networks to upscale a set of features from a previous
layer to bring the output closer to the desired width-height resolution, or in the case of
VC systems operating on Mel-spectrograms, to the desired sequence length and number of
Mel-frequency bins.

2.3.5. Generative adversarial networks
Several recent high-performing methods for VC utilize generative adversarial networks
(GANs). Concretely, a GAN does not refer to a particular DNN layer or operation,
but rather to a particular loss configuration whereby two (or more) networks iteratively
compete to maximize the other network’s losses as they minimize their own loss [29]. Since
Goodfellow’s introduction of GANs in 2014, a myriad of variants have arisen, each following
a slightly different training paradigm to achieve various tasks such as image-to-image
translation [4] and even vocoding [15]. Focusing on the prevalent GAN structures in VC,
we will first outline the original GAN model, and then discuss two relevant extensions to
GANs – StarGAN and LSGAN.

Original GAN

The original GAN model consists of two DNNs – a generator G and a discriminator D.
The generator was proposed to, using some input, produce a realistic output from some
dataset (for example, a picture of a zebra). Meanwhile, the discriminator is designed to
detect fake generated data items from real ones (detecting a generated image of a zebra
from an original photograph of a zebra). They are trained such that G’s loss LG attempts
to maximize D’s loss LD, while D minimizes its loss by attempting to maximize G’s loss.
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Algorithm 2.1: Procedure for training traditional GANs. The hyperparameters k and b
represent the number of steps to optimize the discriminator D for each step taken to optimize
the generator G [29], and the batch size, respectively.
r ← 0
for each training epoch do

for iteration in epoch do
if r mod k is 0 then . Perform G optimization step

Sample minibatch of G input data z1, z2, ...zb.
Compute D(G(zi)) for each item in batch.
Update G by performing SGD optimization step on average loss over batch:

LG = log(1−D(G(zi)) (2.1)

else . Perform D optimization step
Sample minibatch of target data X1, X2...Xb.
Sample minibatch of G input data z1, z2, ...zb.
Compute D(G(zi)) and D(Xi) for each item in batch.
Update D by performing SGD optimization step on average loss over batch:

LD = − [log(D(Xi)) + log(1−D(G(zi))] (2.2)

end if
r ← r + 1

end for
end for

The two objectives of G and D are opposite, and a balance is needed to ensure one
does not begin to dominate the other. This feature of GANs has lent them the reputation
of being difficult to train [9]. The basic algorithm to train these networks is given in
Algorithm 2.1. In the traditional GAN model, D attempts to predict the probability that a
given input X has been generated by G.1 Meanwhile, G is trained to generate data fitting
some probability distribution when given a vector z sampled from a random prior noise
distribution.

2.3.6. GAN extensions
Since Goodfellow’s introduction of GANs, a family of extensions to the basic training loop
of Algorithm 2.1 have arisen. One effective model that has seen applications in VC is that
of StarGAN [4], introduced for image-to-image domain translation.

StarGAN

StarGAN changes the traditional GAN setup by positioning the generator to translate
data from some source domain to some target domain, instead of translating a random
noise sample to an output in a target domain. In the original StarGAN paper, this was
proposed to translate across image domains where e.g. the generator G could take in
images of horses and translate them to pictures of zebras [4]. Recent further extensions to
StarGAN have extended this to translation of video sequences and generation of faces [30].

Concretely, StarGAN designs its generator G to take two inputs – an input in some
domain Xsrc and an indication of the target domain to convert the input to strg (typically
specified as a one-hot index vector from a fixed set of domains in the training set). It then

1This X given as input to D is indeed the same mel-spectrogram X from Figure 2.1 in the case of
StarGAN-based VC systems dealt with in this report. However, in general, it could be a sample from a
data distribution of arbitrary meaning and form.
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Generator	Loss Discriminator	Loss

Figure 2.3: StarGAN training configuration [4], showing the various data flows necessary
to compute each term in the generator loss (left) and discriminator loss (right) functions.
The generator G is shown in green, while the discriminator D and classifier C are shown
in orange and blue, respectively.

outputs a converted data item Xsrc→trg. On the discriminator side, StarGAN introduces
two separate networks – a classic discriminator D as seen for the traditional GAN, and
a discriminative classifier C, which predicts the domain an input data item X belongs
to by predicting a probability distribution over the training domains scls. The classifier
C typically shares most of its weights with D and is trained together with the D in the
discriminator training step [4].2

To effectively train such a model, several additional terms are added to the generator
and discriminator’s loss functions. The computation paths to construct these terms are
given in Figure 2.3. During a generator optimization step, the following loss terms are
computed:
• Cyclic loss term Lcyc: by feeding the converted output Xsrc→trg back into the

generator G together with the one-hot representation of the original source domain
ssrc, the generator returns the data item translated back into the source domain
Xsrc→trg→src. Such a source-target-source mapping is known as a cyclic mapping.
StarGAN adds a loss term

Lcls = ||Xsrc −G(G(Xsrc, strg), ssrc)||1 (2.3)

to the generator’s loss LG to force G to retain the semantic content independent of
domain to ensure its representation in the target domain contains all the necessary
information to reconstruct the original input, or as the original authors put it: it
forces the generator to be cyclically consistent.
• Adversarial loss term Ladv: the adversarial loss term is similar to that of the

traditional GAN:

Ladv = log(D(Xsrc)) + log(1−D(G(Xsrc, strg)) (2.4)
2The notation used here again is consistent with that of the abstract VC system of Figure 2.1 – recall

that the Mel-spectrogram X can also be treated as a 2D matrix or image and that utterances from a
source and target speaker comprise unique domains. For StarGAN the domains are just image classes and
the 2D input images X are of physical objects.
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And the motivation is the same – since D attempts to predict the probability that
a given input is generated by G, G’s loss minimizes the term above to force G to
trick the discriminator into predicting low probabilities for samples it generates.
Note that, in Equation 2.4 above, the first term actually falls away in the derivative
since it has no dependence on G’s parameters θG. However it does play a role in
the discriminator’s adversarial loss term. I.e. it will impact the updates of θD – see
below where the procedure fo the discriminator updates are described.
• Classification loss LG−cls: the converted output Xsrc→trg is fed into a DNN classifier

to get a vector of probabilities over possible training domains scls. This is compared
to the actual target domain one-hot vector strg to form a classification loss:

LG−cls = − log(C(G(Xsrc, strg)) · strg) = − log(scls · strg) (2.5)

By minimizing the this term with respect to G’s parameters, G is forced to pro-
duce outputs which maximize the classifier’s ability to correctly classify Xsrc→trg as
belonging to the desired target domain.

Similarly for the discriminator’s optimization step, we compute two terms for the loss.
The first is the negative of the adversarial loss term of Equation 2.4 – it is used in the
same way as in Algorithm 2.1 to train the discriminators parameters θD. The second term
is one to train the classifier C, computed by feeding the original input data Xsrc into the
classifier to get a vector of probabilities over the possible training domains. This vector is
then compared to the one-hot vector representing the original source domain:

LD−cls = − log(C(Xsrc) · ssrc) = − log(scls · ssrc) (2.6)

The inquisitive reader might recognize this as the standard binary cross entropy loss for
training a machine learning classifier! This term simply ensures that C is trained to
act like a standard classifier model. C’s parameters are typically partly shared with the
discriminator D, and are optimized at the same time as the classic discriminator D in the
training algorithm. Phrased differently, we treat C’s parameters as part of θD.

Finally, the coefficients λcls, λcyc are scalar hyperparameters used to balance the
importance of difference terms when training. In summary, StarGAN replaces the generator
and discriminator’s loss functions in the training Algorithm 2.1 with those shown in
Figure 2.3. One aspect to note about the training configuration shown in Figure 2.3 is that
a ground-truth target Xtrg is never used. Thus, one does not need data items Xsrc and Xtrg
containing the same domain-independent semantic content to train the model – only Xsrc
is needed. Recalling the definitions of parallel/non-parallel models from Section 2.1, this
means that StarGAN is a non-parallel model because it can be trained with non-parallel
data. This fact is exploited in non-parallel VC systems discussed in Chapter 3.

LSGAN

A second GAN modification used by modern VC algorithms is that of the least-squares
generative adversarial network (LSGAN) [31]. Like StarGAN, it entails a change to the
loss function of the generator and discriminator, but unlike StarGAN, the change is purely
mathematical and does not require additional invocations of the models or additional loss
terms. Simply put, LSGAN entails changing the adversarial loss term so that, instead of
D predicting the probability of an output being generated by G, the discriminator predicts
an unbounded scalar.
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LSGAN defines an adversarial loss for the generator LG−adv and discriminator LD−adv
consisting two hyperparameter scalar constants a and b. G’s loss tries to push D’s output
for converted data items closer to a, while D’s loss function tries to push D’s output for
converted items closer to b and its output for real data samples closer to a [31]. Concretely,
the generator’s adversarial loss is replaced with the LSGAN adversarial loss

LG−adv = [D(G(Xsrc, ssrc))− a]2 (2.7)

while the discriminator’s adversarial loss is no longer just the negative of the generator’s
loss, but rather is now defined as

LD−adv = [D(G(Xsrc, ssrc))− b]2 + [D(Xsrc)− a]2 (2.8)

Here we have used the same notation as in the StarGAN setup because the notation lends
itself well to its further extension for VC discussed in Chapter 3, where X refers to an
utterance and s refers to some representation of the (source or target) speaker identity.
LSGAN purpose is to stabilize the training process of the GAN by punishing D more
severely when it predicts values far from the desired constants a and b [31]. LSGAN,
like other GAN extensions, can be utilized together with StarGAN. A particular GAN
architecture can incorporate the LSGAN loss by simply replacing its adversarial loss terms
for G and D with those of Equations 2.7 and 2.8 respectively.

2.4. Related work
We now proceed from the theory used in VC systems to the history and recent progress
of VC models. The origins of VC is found in the field of digital signal processing. With
the resurgence of neural networks in the past decade, recent VC models have splintered
into several directions based on DNNs. Two popular approaches which have broken
state-of-the-art results in the past few years have been methods based on autoencoders
and those based on GANs. In this section we discuss recent trends in VC research and
methods used, saving the specific model details for the implementations compared and
analyzed in Chapter 3.

2.4.1. Traditional methods
Traditional VC models can typically be identified by their ability to only perform one-
to-one conversion that requires either parallel or no training data. Most of the early VC
models in the 1980’s and 1990’s treated speech as an explicit statistical model. Toda et.
al. [32] and Stylianou et. al. [33] used Gaussian mixture models in the 1990’s to achieve
compelling results at the time by modelling a special relationship between the ‘spectral
envelope’ (pitch) of the source and target speaker, using dynamic time warping (DTW) –
a technique to align two sequences of vectors – to train a parallel VC system.

Some other models attempted to model the frequency warping effect of the human
vocal tract [16]. Meanwhile, other traditional models attempted to model the specific
frequency bands present (high amplitude in the STFT/Mel-spectrogram) in a speaker’s
speech (called formants) [34, 35]. In general, these traditional techniques can be classified
into rules-based methods [16,34,35] and statistical models of speech [32,33]. More recently,
some DNN aproaches have attempted to use stacked LSTMs to perform one-to-one VC [36].
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These traditional methods have fallen out of favor in the recent VC literature [1,12] due
to their inability to handle many-to-many VC mappings. The field is currently dominated
by neural network approaches, both for the vocoder and the mapping function of Figure 2.1.
Note, however, that the training process of a neural network can be phrased in many
circumstances as a statistical model (with DNN parameters θ) being optimized to fit some
probability distribution (the samples of which comprise the dataset) by maximizing a
maximum likelihood or proxy metric. This report, however, will continue to treat DNNs
as pure function approximators, whereby the DNN is trained to approximate an ‘ideal
voice converter’ that perfectly performs the VC task.3

2.4.2. Autoencoder methods
An autoencoder is a model (typically a neural network) consisting of two sub-modules –
an encoder and a decoder. The encoder compresses the input X to some lower dimensional
representation, while the decoder attempts to expand this to reconstruct the original X.
The full autoencoder network is typically trained to reconstruct its input by minimizing
the difference between the decoder’s output and the encoder input. Since they are only
trained to reconstruct inputs, they can be trained with non-parallel voice data.

With the introduction of neural networks in the last decade, several variants of
autoencoders have arisen such as vector quantized and variational autoencoders [37]. Like
with GANs, a handful of these extensions have been developed for use in VC. Kameoka et.
al. [38] proposed a variational autoencoder with an auxiliary classifier to perform VC, while
Tobing et. al. developed a cyclic autoencoder to achieve high-performing non-parallel
VC [39] by optimizing reconstruction after a cyclic source-target-source mapping.

We will look in particular at the AutoVC model introduced by Qian et. al. [9] since it
was the first VC model to achieve zero-shot VC and satisfies several of the practicality
requirements of Chapter 1. It achieved this by introducing a non-trivial way to encode
the desired source and target speaker information. AutoVC achieves this by utilizing a
special speaker embedding network to generate a unique embedding for the source and
target speaker ssrc and strg, instead of encoding the speaker information as trivial one-hot
vectors or ignoring them outright as previous one-to-one VC models did.

2.4.3. GAN methods
With the success of GANs in image-to-image translation across domains, particularly
StarGAN’s ability to train with non-parallel data as shown in Section 2.3.6, several authors
attempted to adapt these techniques for VC. Figure 2.4 shows how the many-to-many
image translation task performed by existing GAN systems can be directly applied to
VC. This direct application is possible because a Mel-spectrogram Xsrc can be treated as
a 2D image, and different speaker identities as different ‘image domains’. The methods,
reasoning, and theoretical justifications for image domain translation GANs like StarGAN
must then be valid for VC.

Kameoka et. al. applied the StarGAN technique directly as in Figure 2.4 to the
VC task in [7] to achieve high performing results. They went on to further adapt the
StarGAN technique to develop StarGAN-VC2 – a state-of-the-art many-to-many VC
system [30]. Other authors have modified other GAN extensions to achieve VC, such as

3Multiple such functions may exist, as one can imagine multiple valid conversions for an input utterance.
The DNN need only approximate one arbitrary valid ‘ideal VC function’.
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Figure 2.4: Equivalency of StarGAN image translation and VC tasks, showing the
original many-to-many image domain translation results by StarGAN (top) [4] together
with how many-to-many VC can be expressed as an equivalent image domain translation
task (bottom). Each image in the bottom row is the Mel-spectrogram of a speech
utterance, with the converted utterances produced using the StarGAN-ZSVC model
introduced in Chapter 3.

the AdaGAN-VC system by Patel et. al. [40]. These GAN-based systems have seen success
in recent VC competitions [1,12], owing to their ability to perform both many-to-many
conversion and ability to be trained with non-parallel data.

2.4.4. Vocoders
So far we have only described the mapping function of the full VC system (recall Figure 2.1).
GANs and other model architectures have also played a role in vocoder systems. Some
models, such as voice conversion based on modelling the vocal tract [16] or StarGAN-
VC [7], use parametric algorithms like the WORLD vocoder [19] to convert a model’s
spectrogram output back to a time-domain waveform. Others use more recent neural
vocoders, which can be further divided into autoregressive models, such as those of the
WaveNet family [14] and the recent WaveGlow models [13], and non-autoregressive models,
such as the GAN-based MelGAN [15].

The fine details of how vocoders work is beyond the scope of this project, since
vocoding is a substantive research field in its own right. Suffice to say, the vocoder converts
the Mel-spectrogram back to a time-domain waveform and each has its advantages and
disadvantages. The autoregressive models like WaveNet [13] are typically of higher quality
than non-autoregressive models [11], however this comes at a cost: because autoregressive
models – by definition – must operate sequentially to progressively build up its output,
they are slower than non-autoregressive models.

Sometimes this effect is massive. For example, WaveNet models can often take 10-30
seconds to convert one second of audio, however the conversion quality will be immaculate
compared to MelGAN, which can convert a second of audio in only a few milliseconds on an
Nvidia RTX 2070 graphics card. Other times it is less pronounced, with the autoregressive
WaveGlow model only being 10x slower than the non-autoregressive models.

2.4.5. Speaker identification
A further interesting innovation introduced by AutoVC is the technique of using a specific
speaker embedding model for the ‘speaker information extraction’ block of Figure 2.1. By
using an explicit speaker information extraction model, AutoVC can achieve zero-shot VC
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Figure 2.5: The 3-layer LSTM model used for speaker identification in the GE2E model.
For visual clarity, the notation for the 2nd (middle) and 3rd (top) LSTM layers are
omitted. All cell invocations with the same color share parameters. All hidden and cell
states are initialized as zero vectors.

by using the model to obtain embeddings s for speakers unseen during training.4 In fact,
only two known models – aside from the StarGAN-ZSVC model developed in this project –
can perform zero-shot VC (AutoVC [9] and the pre-print ConVoice VC model [41])) and
both use the same speaker embedding idea to achieve zero-shot VC.

Concretely, the speaker embedding network is repurposed from an existing successful
architecture for speaker identification. Speaker identification is the task of, given an input
utterance X, determining the identity of the speaker of the utterance. Although speaker
identification encompasses another research field itself, one model in particular is useful
for VC because it achieves speaker identification by finding a fixed dimensional embedding
s for an arbitrary speaker. This embedding can then be treated as the information vector
ssrc for the source speaker and strg for the target speaker in VC systems.

The embedding system is that introduced in the paper Generalized End-to-End (GE2E)
Loss for Speaker Verification [42]. It consists of an embedding network and a special
GE2E loss. The embedding network is a stacked 3-layer LSTM network which takes in a
Mel-spectrogram X and returns a d−dimensional vector s – known as a d−vector in the
speaker identification literature.

In such a stacked LSTM network, each frame of the Mel-spectrogram X is fed into
a LSTM layer as the input vector xi as described in Section 2.3.3. The data is then fed
through the stacked LSTM as shown in Figure 2.5 which shows how a stacked LSTM
operates by treating the hidden states of the first LSTM layer as a new sequence of inputs
to a separate LSTM layer with different parameters. As an aside, some authors prefer
to use the sequence if outputs y1,y2, ...yN as the input to the next layer as opposed to
the sequence of hidden states in Figure 2.5. Most implementations in software libraries –
and funnily enough by implication in most recent papers using multi-layer RNN systems –
use the hidden state sequence as input to the next RNN layer [27], thus we use it in our
experiments here to be consistent with the major software libraries. The h-dimensional
hidden state of the final layer is fed through a linear layer to project it to d-dimensions
and then divided by its Euclidean norm, yielding the embedding vector s.

The final piece of the puzzle is how such a GE2E network is trained such that the s
vector represents information about the speaker of an input utterance. To achieve this,

4All models prior to AutoVC had either ignored this section of the VC system (as in one-to-one models),
or used trivial encodings of speaker identity (such as a one-hot encoding, or fixed embedding for each
training speaker).
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the second part of the GE2E system is a special GE2E loss. Intuitively, the GE2E loss
is made to maximize the cosine similarity between embeddings of utterances from the
same speaker while at the same time attempting to minimize the cosine similarity between
embeddings of utterances from other speakers.

Concretely, the embedding model takes in U utterances from K different speakers
in each batch, generating UK embeddings. Using these embeddings, we compute the
geometric centroid ck over the embeddings for each speaker, giving us K centroids – each
acting as an ‘average embedding’ vector that speaker. Then, a scaled cosine similarity is
computed for each embedding/centroid pair w · cos(s, ck) + b where w and b are trainable
parameters shared by all cosine similarity computations. Performing this yields UK2

cosine similarity scores – one for each pairing of the UK embeddings and K centroids.
Finally, the scalar loss for each embedding s (belonging to speaker k) is defined as

the sum of the negative cosine similarity to the k’th speaker centroid ck and the log of
the sum of K additional terms. These K terms are the natural exponentiation of the
cosine similarity between s and each of the K centroids [42]. The first part of the loss
function guides the model to maximize the cosine similarity for embeddings of utterances
from the same speaker, while the second part forces the embeddings to be far apart from
all centroids – and thus all other embeddings. The average of this loss is taken over all
utterances in the batch for the optimization step.

Training such a network with this specially crafted loss function yields well-behaved
embedding behavior [42]. This means that embeddings of utterances saying vastly different
things – but by the same speaker – still yield embeddings very close to one another in
d−dimensional space. It also means that utterances saying precisely the same thing but by
different speakers yield embeddings far apart in d−dimensional space. Such functionality
provides us with a way to obtain a unique vector associated with each speaker, simply by
passing an arbitrary utterance from the desired speaker through the network.

2.5. Summary
This chapter began with a general description of VC systems and the terminology used to
describe each part of the system. We then proceeded to describe the theory necessary to
reason about and discuss common techniques used in the various blocks of a VC system.
Finally, we provided a broad outline of recent efforts in VC in Section 2.4, covering several
classes of VC models and their supporting vocoders and feature extractors.

Now, with this background in place, we can proceed to define concrete implementations
of VC systems in the next chapter, and discuss how their construction defines their
capabilities and limitations. In particular as we proceed, Figure 2.1 (which defines the
general form of a VC system) will be crucial. All the models we examine in the next
chapter will entail filling in the various blocks of the full VC system – from the mapping
function / model to the speaker information representation – using different methods. In
each case, using the background of this chapter should make the reasoning behind certain
architecture choices appear trivial.

For example, with the theory behind the GE2E speaker verification model in the
previous section, one can begin to see how achieving zero-shot VC is possible: an utterance
from a speaker unseen during training can be fed into the speaker embedding network to
yield a speaker embedding s which can be used to condition the VC mapping function to
convert to/from the unseen speaker. Yet, before the introduction of the AutoVC model in
2019, no authors had made this connection which now seems almost obvious.



Chapter 3

Models
In this chapter we will describe six VC models – three baseline one-to-one models of
increasing complexity, two state-of-the-art many-to-many VC models, and finally our own
VC model design – StarGAN-ZSVC. For each model, the motivation behind including it
in our analysis is given along with the structure of the model and the abstract form by
which it is trained.

As mentioned in Section 2.2, each model will define the core mapping function and
the way speaker information is represented. So long as the vocoder is sufficiently fast, the
feature extraction and vocoding choices are not the limiting factors in determining whether
a VC system satisfies the practicality requirements of Chatper 1. Thus we will define and
use a standard feature extraction (using Mel-spectrograms) and vocoding process (using
the WaveGlow vocoder) later in Chapter 4. We use these across all models to ensure a
fair comparison.

3.1. One-to-one baseline models
The first set of models we consider are three one-to-one VC models. All the one-to-one
models require parallel data, and are optimized by comparing the model output Xsrc→trg
to the ground-truth target Mel-spectrogram Xtrg using an L1 loss (which we found to
produce better results than the L2 loss). In all one-to-one models, the full VC system
ignores the speaker information because such information is implicit in the one-to-one
mapping that the model is trained to perform.

3.1.1. Linear convolutional network
The first model we consider is a purely linear DNN with no activation functions. It is
chosen as a simple baseline to ensure that the rest of the software framework is working
and to serve as a sanity check that any designed VC system we make should outperform
the linear baseline.

Treating the input Mel-spectrogram Xsrc as a 2D image, the linear model consists of 4
convolutional layers with output channels and kernel sizes of (200, 5x5), (200, 5x5), (100,
3x3), and (1, 3x3), respectively. The input Mel-spectrogram is fed sequentially through
each of these convolutional layers to produce the output. The network architecture is
is chosen based on experimentation and practical experience with DNNs to try get the
optimal performance (on a validation set) with only a few linear layers.

In such a network, all inputs should come from a single source speaker and all ground-
truth targets should be from a single target speaker – the network is optimized to only
convert from speaker A to speaker B. Further, since the model consists of only a handful
of linear convolutional layers, this network is incredibly fast to perform inference – helping
it satisfy at least the speed requirement. The other practical requirements are disregarded
since this network is designed as a simple baseline model to compare others against.
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3.1.2. UNet-based network
A common architecture in image-to-image translation models is that of the UNet architec-
ture, which consists of several convolutional layers that encode an input image down to a
lower dimensional space, and then a series of transposed convolution or pixel shuffle layers
which bring the lower dimensional data back to the original input dimensions. The input
to set of convolutional layers on the downward / encoder path is also concatenated as an
input to each corresponding set of pixel shuffle layers on the upward / decoder path in
what are known as ‘skip connections’ [43].

Since the original UNet was proposed, several improvements have been suggested, and
one UNet derivative that maintains very high performance on image translation tasks is
that of Howard’s DynamicUNet [44] based on XResNet. XResNet is a convolutional model
intended for image classification, developed by implementing several improvements to a
previous convolutional DNN model [45]. Howard’s DynamicUNet arranges the layers of
XResNet into the encoder of a UNet model, and then constructs an appropriate upward /
decoder path using pixel shuffle and further convolution layers [44].

Again, as a one-to-one model it uses parallel training data and compares the output
Mel-spectrogram (image) to the ground-truth Xtrg. We chose to include this DynamicUNet
model in our comparison to assess how well recent image-to-image translation systems
perform when directly applied to VC without any adaptation or changes. The precise
model architecture is rather large and cumbersome to enumerate, requiring significantly
more background from the visual segmentation field to motivate certain layer choices
and hyperparameters. Thus, since the goal of evaluating this model is to assess the
‘out-of-the-box’ performance of a high performing image-to-image translation model, only
a superficial description of the model architecture is provided.

At a high level, the UNet model follows the form shown in Figure 3.1. with over 31
million parameters. Each block in the figure represents several layers of specially crafted
sizes such that, in addition to yielding high performance on image-to-image translation
tasks, the m×N input Mel-spectrogram Xsrc yields an output Xsrc→trg of the same shape
m×N . The various blocks are comprised of arrangements of convolutional layers, ReLU
and sigmoid non-linearities, PixelShuffle layers, and a kind of image normalization layer
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Figure 3.1: High level architecture of XResNet-based UNet constructed with the
DynamicUNet method [44], showing the downward and upward paths and skip connections
between each downward and upward set of layers. The full model architecture is defined
precisely in the original DynamicUNet method by Howard [44].
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known as BatchNorm [44].
Note that, due to the nature of the kind of layers present, the input spectrogram X

can be of arbitrary length N . If instead the model included linear layers, then the input
would need to be of fixed dimensions because the matrix multiplication of a linear layer
requires the input to be of a fixed shape. This model serves as a more advanced one-to-one
conversion baseline based on directly applying image-to-image mapping techniques without
adaptation.

3.1.3. Deep bidirectional LSTM (DBLSTM)
We next consider a modification of the deep bidirectional LSTM (DBLSTM) model
proposed by Sun et. al. in 2015 [36]. This model serves as one of the more advanced
methods for one-to-one VC, and most work since 2015 has moved on to many-to-many
systems [11] using the techniques outlines in Section 2.4. The modified DBLSTM model is
described in Figure 3.2.

The model is strikingly similar to the LSTM model for speaker identification discussed
in Section 2.4.5, with the DBLSTM model defined by four stacked bidirectional LSTM
layers with a hidden state h size of 256 and a dropout of 0.3, followed by a final linear
layer to project the output the LSTM output back to m dimensions (recall m is the
number of bins in the Mel-spectrograms X). A bidirectional LSTM layer is identical to
two traditional LSTM layers, except one receives the input sequence of Mel-spectrogram
frames xi in reverse order. The bidirectional LSTM layer is then completed by treating
the hidden state as the concatenation of the hidden state h for the forward and backward
LSTM layers [36]. Thus, the bidirectional LSTM layer acts exactly as the traditional
unidirectional LSTM to external layers, with the exception that the each hidden state
passed to the next layer is twice as long as before.

The original DBLSTM also had three important differences to our modified model.
First, it used the STRAIGHT vocoder, which is similar to the WORLD vocoder discussed
in Section 2.3.1 in that it represents speech as a 3-tuple of MFCCs, aperiodicity signal,
and pitch contour. The second is that the DBLSTM model only attempted to convert the
MFCCs of the source speaker to match those of the target speaker, and performed a linear
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Figure 3.2: Architecture of the DBLSTM VC model adapted from the original Sun et.
al. model [36]. Each LSTM layer has a hidden state size of h = 256. The model takes as
input a sequence of m-dimensional vectors (Mel-spectrogram), and returns a sequence of
hidden states at the final layer, which are each separately fed through the same linear
layer to project them from Rh to Rm. This sequence of m-dimensional output vectors
comprise the frames of the converted Mel-spectrogram. The matrix sizes of the input
and output are indicated below each variable.
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conversion for the other two items in the tuple using the mean pitch and aperiodicity
computed from utterances from the single target speaker. As mentioned at the start of the
chapter, we opt to use a uniform vocoder and Mel-spectrogram feature extraction process
to fairly compare the VC models in isolation. Thus our implementation uses the DBLSTM
model to convert Mel-spectrograms instead of MFCCs, and the resulting Mel-spectrograms
are synthesized to speech using the same WaveGlow vocoder as the other models.

The second important distinction is that the original DBLSTM uses a time alignment
technique (DTW, discussed further in Chapter 4) between the source and target utterances
to try help the model learn more effectively [36]. We opt to not use this, as we already use
the DTW alignment technique to construct several of our metric comparisons in Chapter 5
and no other models considered use an alignment technique. The DTW alignment of the
source spectrogram to the target spectrogram can also be viewed as part of the feature
extraction block of Figure 2.1. So since we have already decided to use a consistent standard
Mel-spectrogram feature extraction process, we do not use any alignment techniques.

Furthermore, in our version of DBLSTM dropout is applied to the sequence of hidden
states passed between LSTM layers with the zeroing of elements done consistently for
hidden states in the same sequence. We included this as it appeared to improve the
performance on the validation set substantially. Again, since the DBLSTM is a one-to-one
model, it does not use any explicit speaker information and is trained to minimize the L1
difference between the output sequence Xsrc→trg and the ground-truth target utterance
Xtrg. The DBLSTM model is included to assess how a recent traditional (in the sense that
it can only perform one-to-one conversion) model designed specifically for VC performs in
terms of the practicality requirements of Chapter 1.

3.2. StarGAN-VC2
We now proceed to the many-to-many models which are much closer to being practical.
The first model we look at is the many-to-many StarGAN-VC model introduced by Kaneko
et. al. [7] and in particular its extension with StarGAN-VC2 [8]. The StarGAN-VC and
StarGAN-VC2 models are beginning to achieve near human level results with StarGAN-
VC2 being a frontrunner at the recent VCC 2020 competition [12]. StarGAN-VC was
a direct application of StarGAN (as discussed in Section 2.3.6 and 2.4.3) to VC, while
StarGAN-VC2 makes several modifications to tailor the StarGAN model for VC.

Unfortunately, like the DBLSTM model just discussed, both StarGAN-VC and
StarGAN-VC2 use the WORLD feature extractor and vocoder [19] and represents an
input utterance as a 3-tuple (as discussed in Section 2.3.1). The models only convert the
MFCC from the source utterance to the target domain and performs a linear conversion –
utilizing the average pitch statistics for utterances of the source and target speaker – for
the other two elements of the 3-tuple of each input utterance.

The authors design the model to achieve high performance in a low-resource setting
using this specific WORLD feature extraction and vocoder, and acknowledge that the
performance drops substantially when the model is forced to convert the full 3-tuple of each
utterance or a simple Mel-spectrogram [8]. However, this model is included in this project
to assess a state-of-the-art GAN-based VC model. And since the performance of this
model is strongly tied to the WORLD vocoder, we opt to make an exception and retain
the original WORLD feature extraction and vocoder in our experiments and
analysis of this model.

Since StarGAN-VC2 is a strict improvement of StarGAN-VC [8], we will only an-
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alyze StarGAN-VC2. In particular, StarGAN-VC2 [8] extends upon StarGAN-VC [7]
by training a single generator model to perform many-to-many voice conversion using
speaker-dependent modulation factors in specially designed DNN layers. Concretely,
StarGAN-VC2 follows precisely the same training regime and structure as the StarGAN
model applied to VC discussed in Section 2.4.3 with the following changes applied:

• The model’s generator G(Xsrc, ssrc, strg) and discriminator D(X, ssrc, strg) are condi-
tioned on both the source and target speaker, unlike the StarGAN and StarGAN-VC
models which are only conditioned on the target domain/speaker. Like with the
original StarGAN, the source and target speaker identities are given as one-hot
vectors, ssrc and strg, respectively. The input Xsrc is now a 36×N MFCC, as per
the original paper.

• The discriminator D(X, ssrc, strg) returns a scalar (instead of a probability), and the
overall GAN is trained using LSGAN (see Section 2.3.6) for the adversarial loss
terms. No separate discriminative classifier is used as was the case for StarGAN.
Instead, the discriminator fills the role of the traditional GAN discriminator and the
classifier by yielding a scalar indicating how confident it is that a spectrogram X
was generated by G converting it from some specified source domain ssrc to some
target domain strg.

• Specially designed conditional instance normalization (CIN) layers are added to
allow speaker specific information to modulate convolutional layer outputs along the
channels dimension [46].

• The architecture of the generator and discriminator are carefully designed using a
2-1-2D DNN generator architecture and a projection discriminator [47].

3.2.1. Loss function
Recalling the background on GANs, the generator is trained to force the discriminator’s
output when given converted spectrograms to be high, while the discriminator is trained
to make its output low when given converted outputs and high when given original
spectrograms.

To make the above changes above more formal, we define the loss function explicitly
using the source-and-target conditional generator and discriminator. The generator G
is trained to minimize the loss L = λidLid + λcycLcyc + LG−adv. The first term, Lid is an
identity loss term added to the traditional StarGAN generator loss to stabilize training.
It aims to minimize the difference between the input and output spectrogram when the
model is made to keep the same speaker identity, i.e. convert from speaker A to speaker A.
It is defined by the square L2 loss:1

Lid = ||G(Xsrc, ssrc, ssrc)−Xsrc||22 (3.1)

Next, the cyclic loss is added to ensure that StarGAN-VC2 remains cyclically consistent.
This second loss term is nealy identical to the original cyclic loss term of Equation 2.3 and
is motivated by the same reasons. Formally, the second term of the loss aims to minimize

1The original system used a pure L2 loss, but we found a square L2 loss to yield better results in our
experiments.
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the cyclic reconstruction error between the cyclic mapping and original spectrogram:

Lcyc = ||Xsrc −G(G(Xsrc, ssrc, strg), strg, ssrc)||1 (3.2)

Finally, the adversarial loss term LG−adv is added based on the LSGAN loss as discussed
in Section 2.4.3. Concretely, G’s adversarial loss is defined as

LG−adv = (D(G(Xsrc, ssrc, strg), ssrc, strg)− a)2 . (3.3)

while, the discriminator D is trained to minimize the corresponding LSGAN discriminator
loss:

LD−adv = (D(G(Xsrc, ssrc, strg), ssrc, strg)− b)2 + (D(Xsrc, strg, ssrc)− a)2 (3.4)

For the original StarGAN-VC2, the authors set the scalar coefficients as λid = 5, and
λcyc = 10. The original study [8] does not mention how a and b are set (despite these
greatly affecting training); we treat them as hyperparameters and found a = 1, b = 0 to
work well in our experiments.

3.2.2. Architecture
StarGAN-VC2 uses a specially designed 2-1-2D convolutional architecture for the generator,
as well as a projection discriminator [47] which comprises of a convolutional network (to
extract features) followed by an inner product with an embedding corresponding to the
source/target speaker pair. For the generator, a new form of modulation-based conditional
instance normalization was introduced in [8]. This allows the speaker identity (which is
provided as a one-hot vector) to multiplicatively condition the channels of an input feature.
According to [8], this special layer is a key component in achieving high performance in
StarGAN-VC2.

Unfortunately, StarGAN-VC2 is not open source, and the original paper includes a
rather nasty error in its model definition.2 Without being certain that our implementation
is the same as the original StarGAN-VC2, we make a best assumption interpretation from
the original paper and construct the model as shown in Figure 3.3.

The network architecture requires a few remarks. The first is that both the generator
and discriminator concatenate the d-dimensional one-hot embeddings for the source and
target speaker together, and then one-hot encode the result. Since each one-hot speaker
encoding s has d possible values, the one-hot encoding of the pair (ssrc, strg) has d2 possible
values. Thus the output of the One-hot encode layers of Figure 3.3 have an output size
of d2, with a unique one-hot encoding for each source-target speaker pairing.

The second aspect to note is that the projection discriminator (based off of [47]) D
performs a dot product of a 512-dimensional embedding with the output of a global sum
pooling layer – a layer which simply returns the input tensor summed along the width and
height dimension. This fixed-dimensional dot product means that the input size X must
be fixed – and thus that any input utterance to D must be of fixed length (128 MFCC
frames). However it does not hinder the ability of the VC model, as the generator G
does not suffer from any fixed-dimension requirements and can convert inputs of arbitrary

2The reader might find it instructive to inspect Figure 3 of [8] and carefully review the channels and
shapes of the final few generator layers. There is no way to consistently interpret the convolutional layer
sizes that makes the model mathematically valid.
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Figure 3.3: The generator G and discriminator D architectures of the StarGAN-VC2
model [8]. Within layers, k and s represent kernel size and stride (for convolutions), f is
the scaling factor (for pixel shuffle), and h and c are the height and channels of the output
(for reshape layers). A number alongside a layer indicates the number of output channels
(for convolutions), or output units (for linear and embedding layers). GLU layers split
the input tensor in half along the channels dimension. GSP, GLU, and Embed indicate
global sum pooling, gated linear units, and embedding layers, respectively.

length. Thus, during training, all input utterances must be trimmed to only 128 MFCC
frames while during inference (when only the generator is used), input utterances can be
of arbitrary length N .

A further important part of the architecture is the ‘Conditional block’ of Figure 3.3.
These conditional blocks are intended to provide the network with a way to modulate the
channels of an input spectrogram, with modulation factors conditioned on the specific
source and target speaker pairing. They utilize a convolutional layer followed by a modified
CIN layer [46] and a gated linear unit (another kind of non-linear activation function) [48].

The modified CIN layer performs the following operation on an input feature vector f :

CIN(f , γ, β) = γ

(
f − µ(f)
σ(f)

)
+ β (3.5)

where µ(f) and σ(f) are respectively the scalar mean and standard deviation of vector
f , while scalars γ and β are obtained from two embedding vectors associated with the
one-hot source-target speaker vector, as depicted in Figure 3.3. The above relation is
computed separately for each channel when the input feature contains multiple channels.

3.3. Speaker embedding network
With StarGAN-VC2 and previous models mentioned, the speaker information was presented
as either a one-hot embedding, implicitly built into the one-to-one model, or encoded using
an embedding layer. All of these methods do not allow generating embeddings for unseen
speakers – preventing any of the previous models in chapter from achieving zero-shot VC.
AutoVC (discussed next) changed this by introducing a speaker embedding network as
described in Section 2.4.5.
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As mentioned in Section 2.4.5, the network is trained using a GE2E loss to convert
an arbitrary length input Mel-spectrogram X into an embedding vector s that should
be as similar as possible for utterances spoken by the same speaker, and far apart from
embeddings of utterances spoken by other speakers. Thus, for use in the AutoVC and
StarGAN-ZSVC models described next, we design a speaker embedding network similar
to the original GE2E model of [42].

Formally, we define our speaker embedding model E(X) as a 2-layer stacked GRU
network. The data flows are the same as that of the stacked LSTM of Figure 2.5, except
using GRU layers instead of LSTM layers, and with only 2 such layers instead of 3. Each
layer has h = 768 hidden units – in line with the number of hidden units used by the
speaker embedding network of AutoVC [9] – with a 0.3 dropout between layers which we
found to give best results on the validation set. The final linear layer is made to project
the final hidden state to d = 256 dimensions.

Recall this model is intended to generate speaker embeddings and is not a VC system on
its own – it can simply act as the ‘speaker information extraction’ block of Figure 2.1. And
the first model to recognize the usefulness of such an embedding network and implement
it in a VC system was AutoVC, discussed next.

3.4. AutoVC
Zero-shot voice conversion was first introduced in 2019 with the AutoVC model [9], which
remains one of only a handful of models that can perform zero-shot conversion. AutoVC
uses an autoencoder with a specially designed bottleneck layer to force the network’s
encoder to only retain linguistic content in its encoded latent representation – represented
as a sequence of vector similar to a Mel-spectrogram. AutoVC then uses a separate
recurrent speaker embedding model as described in the previous section to extract a
speaker embedding s from an input spectrogram. This embedding s is then used to supply
the missing speaker identity information to the decoder which, together with the linguistic
content from the encoder, allows the decoder to synthesize an output spectrogram for an
unseen speaker.

3.4.1. Architecture
The original authors give a lengthy derivation and motivation for the layer size requirements
to ensure that the encoder output only contains speaker-independent linguistic information.
They also utilize some additional special DNN layers like batch normalization and a special
downsample/upsample operation. Since the goals of including this model in analysis is to
assess the practical usefulness of a state-of-the-art zero-shot VC technique, we treat the
above two parts of the model as outside the scope of this project, and purely focus on its
broad structure and performance in comparison to the other models.

Concretely, the architecture of the autoencoder is shown in Figure 3.4. The encoder and
decoder consists of convolutional and LSTM recurrent layers which are carefully designed to
ensure that no speaker identity information is present in the encoder output. The original
AutoVC used a 2-layer stacked LSTM network for the speaker embedding model [9], while
we opt for the 2-layer stacked GRU model described in Section 3.3 because of its improved
speed over LSTM layers. In Figure 3.4 the outputs of LSTM (or bidirectional LSTM)
layers are taken as the sequence of hidden state vectors from the final layer, concatenated
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Figure 3.4: Architecture of the AutoVC model [9]. The encoder and decoder parts of
the autoencoder are grouped as shown. Within layers, k and s represent kernel size and
stride (for convolutions). A number alongside a layer indicates the number of output
channels (for convolutions), output units (for linear layers), or hidden units (for LSTM
layers). Groups of layers sharing identical structure are indicated by boxes of unique
color with dashed outlines. BLSTM and BatchNorm indicate bidirectional LSTM and
batch normalization layers, respectively.

to form a 2D image to feed to downstream convolution layers. The extensive use of LSTM
layers causes the model to be fairly slow, as LSTM layers operate sequentially.

The first layer in the encoder concatenates the d-dimensional speaker embedding
ssrc = E(Xsrc) to the 80×N (recall we use m = 80 as the number of Mel-frequency bins)
input Mel-spectrogram by broadcasting the vector across the width and height of Xsrc. I.e.
ssrc is repeated along the width and height dimension to form a d× 80×N dimensional
tensor. This vector is then concatenated with Xsrc to form a (d+ 1)× 80×N tensor to
use for further convolution layers.

The Upsample and Downsample layers perform a special kind of sampling operation on
the input 2D image tensor (or equivalently a sequence of hidden states) to produce an
output vector sequence which is concatenated with the target speaker embedding vector
strg in the same way as for the first layer – by broadcasting the speaker embedding along
the width and height dimensions of the Upsample layer’s output tensor.

In the decoder an intermediary value is labeled X̃src→trg. This is a value used in training,
however at inference it remains unused and the converted spectrogram is Xsrc→trg as usual.

The original model utilized a WaveNet vocoder, yielding a very high quality but with
extremely slow inference times (roughly 10-20 seconds to convert 1 second of audio). This
made the model impractical in many applications, and is one of the reasons why we chose
to standardize on using the WaveGlow vocoder in our implementation (as with the other
models). The precise model definition in software is modified from the original author’s
source code [9].

3.4.2. Loss function
As with most autoencoders, during training the model is made to reconstruct its input by
using the same source embedding ssrc in the decoder to attempt to reconstruct the input
Xsrc→src. The model is thus only trained to reconstruct Mel-spectrograms by attempting
to convert from speaker A to speaker A and ensuring the output is similar to the input.
An additional term is added to ensure that the speaker identity is closely maintained in
the reconstructed output.

More formally, the full encoder-decoder DNN model is trained to minimize three terms.
The first term is a square L2 reconstruction loss between the decoder output spectrogram
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Xsrc→src and input spectrogram Xsrc, with the source speaker’s encoding (from the speaker
encoder) provided to both the encoder and decoder. The second term is the square
L2 reconstruction loss between the intermediary decoder term X̃src→src and the input
Xsrc. Adding this term gives a stronger gradient signal to the earlier layers and stabilizes
training [9].

The third term is an L1 loss between the speaker embedding of the decoder output
E(Xsrc→src) and the original speaker embedding ssrc = E(Xsrc). The full loss function used
to optimize the parameters θ of the autoencoder model is thus:

L = ||Xsrc→src −Xsrc||22 + λ1||X̃src→src −Xsrc||22 + λ2||E(Xsrc→src)− ssrc||1 (3.6)

where λ1 and λ2 are scalar constants to balance the importance of the different loss
terms in training. In both the original paper and in this project, both values are set at 1
which we found to yield good results.

The speaker embedding model is assumed to be pre-trained and is not optimized along
with autoencoder model. I.e. the 2-layer GRU speaker embedding model parameters
are not treated as part of the AutoVC encoder-decoder parameters θ. In the original
paper, the speaker embedding is trained on a very large (> 10 hours) corpus from several
datasets [9]. For our experiments we also pre-train the encoder on a large set of external
datasets.

Finally, note that as with StarGAN-VC and StarGAN-VC2, a corresponding parallel
target utterance Xtrg does not appear in any of the loss terms, allowing AutoVC to be
trained with non-parallel data. Zero-shot inference is performed by using the speaker
embedding model E to obtain embeddings for new utterances from unseen speakers, which
is then provided to the decoder instead of the embedding corresponding to the source
speaker, causing the decoder to return a converted output. We use this same idea of using
an encoding network to obtain embeddings for unseen speakers in our new GAN-based
approach, which we describe next.

3.5. A new approach: StarGAN-ZSVC
We use these building blocks for our new zero-shot approach. Concretely, the one-hot
speaker vectors in StarGAN-VC2 are replaced with continuous embedding vectors obtained
from a separate speaker embedding network (which can be applied to arbitrary speakers)
as utilized by the AutoVC model. The motivation for using a speaker embedding network
should now be straightforward: it enables a model to perform zero-shot VC, which is one
of the requirements for the VC model to be practical.

However, lets make this motivation more concrete. While StarGAN-VC and StarGAN-
VC2 allows training with non-parallel data and runs sufficiently fast, it is limited in its
ability to only perform voice conversion for speakers seen during training: while parallel
Xsrc and Xtrg utterance pairs are not required, the model can only synthesize speech
for target speaker identities (specified as one-hot vectors) seen during training. This
could preclude the use of these models in many practical situations where zero-shot
conversion is required between unseen speakers. Conversely, AutoVC allows for such
zero-shot prediction and is trained on non-parallel data, but the original model uses a
slow WaveNet vocoder, includes several recurrent layers which significantly slow down its
speed, and its performance suffers when trained on very little data.

Combining the strengths of both of these methods, we propose the StarGAN zero-shot
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voice conversion model – StarGAN-ZSVC. In the following sections we give the motivation
for the various parts of the architecture needed to overcome each practical requirement
defined in Chapter 1. In the following chapter we will compare our new model to the
existing models from the literature previously described.

3.5.1. Overcoming the zero-shot barrier
To achieve voice conversion between multiple speakers, the original StarGAN-VC2 model
creates an explicit embedding vector for each source-target speaker pairing, which is
incorporated as part of the generator G and discriminator D. This requires that each
source-target speaker pairing is seen during training so that the corresponding embedding
exists and has been trained – prohibiting zero-shot voice conversion. To overcome this
hurdle, we instead infer separate source and target speaker embeddings, ssrc and strg, using
a speaker embedding network E as defined in Section 3.3.

The full StarGAN-ZSVC framework is shown in Figure 3.5 – note how each block
roughly maps to one of the blocks of the abstract VC system in Figure 2.1. Utterances
from unseen speakers (i.e. Xsrc and Ytrg) are fed to the speaker encoder E, yielding
embeddings for these new speakers, which are then used to condition G and D, thereby
enabling zero-shot conversion. The generator uses these embeddings to produce a converted
Mel-spectrogram Xsrc→trg from a given source utterance’s Mel-spectrogram Xsrc. And as
mentioned at the start of this chapter, the model uses NVIDIA’s WaveGlow [13] vocoder,
which does not require any speaker information for vocoding and thus readily allows for
zero-shot conversion.

3.5.2. Overcoming the speed barrier
The speed of the full voice conversion system during inference is bounded by (a) the speed
of the generator G (recall the discriminator D is only used in training); (b) the speed of
converting the utterance between time and frequency domains, consisting of the initial
conversion from time-domain waveform to Mel-spectrogram and the speed of the vocoder;

G D

Source utterance

Mel-spectrogram

E
Source speaker embedding

Projection discriminator2-1-2D CNN 
embedding generator

Converted mel-spectrogram

0.863
Discriminator prediction

GRU embedding 
network

WaveGlow
vocoder

Converted utterance

X src

E

Arbitrary spectrogram of 
target speaker

Y trg

s src

Target speaker embedding

X src → trg

s trg
Mel-spectrogram 
transform

Figure 3.5: StarGAN-ZSVC system diagram. The speaker encoder network E and the
WaveGlow vocoder are pretrained on large speech corpora, while the generator G and
discriminator D are trained on a 9-minute subset of the VCC dataset. During inference,
arbitrary utterances for the source and target speaker are used to obtain source and target
speaker embeddings, ssrc and strg, which are used by both G and D to condition their
outputs. Ytrg is the Mel-spectrogram of an arbitrary utterance from the target speaker.
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and (c) the speed of the speaker encoder E. To ensure that the speed of the full system is
at least real-time, each subsystem needs to be sufficiently faster than real-time.

(a) Generator speed.

For the generator G to be sufficiently fast, we design it to roughly follow StarGAN-VC2’s
architecture, only including convolution, linear, normalization, and upscaling layers as
opposed to models using slower LSTM recurrent layer like those used in AutoVC [9]. By
ensuring that the majority of layers are convolutions, we obtain significantly better-than
real-time speeds for the generator – disussed further in Chapter 5.

(b) Vocoder and Mel-spectrogram speed.

Following from the background provided in Section 2.4.4, we opt for a reasonable middle-
ground choice with the WaveGlow vocoder, which does have recurrent connections but does
not use any recurrent layers with dense multiplications such as LSTM or GRU layers. We
specifically use a pretrained WaveGlow network, as provided with the original paper [13].
And as mentioned in Chapter 2, vocoding is a wide field in its own right, and we simply
use the vocoder model trained by the original authors and assign the details of the vocoder
model as outside the scope of this project.

Furthermore, the speed of the Mel-spectrogram transformation for the input audio is
well faster than real-time due to the efficient nature of the fast Fourier transform and the
efficient nature of performing dot products with the Mel-frequency filters.

This choice of using the WaveGlow vocoder and Mel-spectrogram for the feature
extraction and conversion is identical for all the models assessed (except for StarGAN-VC2,
which specifically requires the WORLD vocoder) and is made using the same motivations
in terms of speed and common use in the VC literature.

(c) Speaker encoder speed.

The majority of research efforts into obtaining speaker embeddings involve models using
slower recurrent layers, often making these encoder networks the bottleneck. We also
make use of a recurrent stacked-GRU network as our speaker embedding network E as per
Section 3.3. However, we only need to obtain a single speaker embedding to perform any
number of conversions involving that speaker. We therefore treat this as a preprocessing
step where we apply E to a few arbitrary utterances from the target and source speakers,
averaging the results to obtain target and source speaker embeddings, and use those same
embeddings for all subsequent conversions.

And recall from the design of the speaker embedding network in Section 2.4.5 and 3.3,
the speaker embeddings are d = 256 long vectors of unit length. If we were to use StarGAN-
ZSVC downstream for data augmentation (where we want speech from novel speakers), we
could then simply sample random unit-length vectors of this dimensionality to use with
the generator. This way, each new batch of training data for downstream applications
would transform the utterances into ones spoken by new, never before seen speakers –
hopefully significantly improving the performance of these downstream applications.
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Figure 3.6: StarGAN-ZSVC network architecture. The speaker encoder E is the
recurrent network defined in Section 3.3, while the generator G and discriminator D are
modified versions from the original StarGAN-VC2 architecture. Within layers, k and s
represent kernel size and stride (for convolutions), f is the scaling factor (for pixel shuffle),
and h and c are the height and channels of the output (for reshape layers). A number
alongside a layer indicates the number of output channels (for convolutions), or output
units (for linear and GRU layers). GLU layers split the input tensor in half along the
channels dimension. GSP, GLU, and SELU indicate global sum pooling, gated linear
units, and scaled exponential linear units, respectively.

3.5.3. Architecture
With the previous considerations in mind, we design the generator G, discriminator D,
and encoder network E, as shown in Figure 3.6. The generator and discriminator are
adapted from StarGAN-VC2 [8], while the speaker encoder is adapted from the original
model proposed for speaker identification [42] as defined in Section 3.3. For G, we use the
2-1-2D generator from StarGAN-VC2 with a modified central set of layers, denoted by the
Conditional Block in the figure.

These conditional blocks are intended to provide the network with a way to modulate
the channels of an input spectrogram, with modulation factors conditioned on the specific
source and target speaker pairing. They utilize a convolutional layer followed by the
same CIN layer used by StarGAN-VC2 [46] and a gated linear unit [48]. However now,
instead of using an embedding layer to convert the one-hot encoding of the source-target
speaker pair into the CIN modulation constants γ and β as in StarGAN-VC2, we instead
directly concatenate the d-dimensional source and target speaker embeddings and feed the
resulting 2d-dimensional vector through several linear layers and non-linearities to map
them to γ and β in each conditioning block as shown in Figure 3.6.

For the discriminator, the source and target speaker embeddings are also fed through
several linear layers and activation functions to multiply with the pooled output of D’s
main branch (as opposed to the embedding layers used in StarGAN-VC2).

The generator and discriminator layer sizes are also slightly changed from StarGAN-
VC2 to accommodate m = 80 dimensional Mel-spectrograms instead of the 36-dimensional
MFCCs used by the WORLD vocoder in StarGAN-VC2. And, as in StarGAN-VC2, the
discriminator of StarGAN-ZSVC requires a fixed 128-frame Mel-spectrogram input due to
the dot product operation in Figure 3.6. However, the generator G and speaker encoder
E can still take in utterances of arbitrary length.
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3.5.4. Loss function
StarGAN-ZSVC follows the same training procedure as StarGAN-VC2, using precisely the
same loss terms and formulation as given in Section 3.2. The motivation for the loss is the
same as the general motivation behind the original StarGAN described in Section 2.3.6
and the StarGAN-VC2 specific terms introduced in Section 3.2. In our experiments, using
the same loss function and coefficients λ as for StarGAN-VC2 yielded good results.

3.6. Summary
In Section 3.1, we defined the structure of three baseline models which can only perform
one-to-one VC, while in Sections 3.2 and 3.4 we defined the structure of two recent state-of-
the-art methods for many-to-many VC. Then, combining the strengths of StarGAN-VC2
and AutoVC we defined our new model – StarGAN-ZSVC in Section 3.5.

In addition to outlining the core mapping function of each model, we also defined the
speaker embedding model used by the AutoVC and StarGAN-ZSVC systems in Section 3.3.
In the next chapter, we will concretely define how each model is defined and trained
in software, toward the ultimate goal of assessing how well each one satisfies the four
practicality requirements of Chapter 1.



Chapter 4

Experimental Setup
In this chapter we define how we analyze and evaluate each model described in the previous
chapter. In particular, we start with a description of the dataset and how it is used. We
then continue to give a description of the software and tooling used in the training and
evaluation of each model, followed by a concrete specification of the vocoding and feature
extraction procedures used. Finally, we give an outline of training framework for each
model, and a definition of the various metrics we use to compare them in the results
chapter.

4.1. Dataset

4.1.1. VC models
We compare StarGAN-ZSVC to the other voice conversion models using the voice conversion
challenge (VCC) 2018 dataset [1], which contains parallel recordings (utterances) of native
English speakers from the United States.

The VCC 2018 dataset was recorded from 8 speakers, each speaking 81 utterances
from the same transcript. 4 speakers are used for training and 4 for testing. To emulate
a low-resource setting (recall good performance in low-resource settings is one of the
practicality requirements), we use a 9-minute subset of the VCC 2018 training dataset for
the many-to-many models. This corresponds to 90% of the utterances from two female
(F) and two male (M) speakers (SF1, SF2, SM1, and SM2). This setup is in line with
existing evaluations on VCC 2018 [8], allows for all combinations of inter- and intra-gender
conversions, and allows for zero-shot evaluation on the 4 remaining unseen speakers.

In contrast to many-to-many models, the baseline models of Section 3.1 only allow
for one-to-one conversions, i.e. they are trained on parallel data and can only convert
from seen speaker A to seen speaker B. We therefore train the baseline models on a single

SF1	utterances

All	utterances	from	SM1,	SM2,	SF1,	SF2

SM2	utterances

90% 5% 5% Validation
utterances

Training
utterances

Test
utterances

Many-to-many	modelsOne-to-one	models

90% 5% 5%

Figure 4.1: VCC 2018 training-validation-test splits. One-to-one models utilize 90% of
parallel utterance pairs between SF1 and SM2, while many-to-many models utilize 90%
of all individual utterances from SF1, SF2, SM1, SM2 for training. The precise split is
made using Fastai’s RandomSplitter function using a random seed of 6 [49].
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source-target speaker mapping (from SF1 to SM2), using 90% of the parallel training
utterances for this speaker pair. Figure 4.1 shows the training-validation-test split for the
two classes of models.

Importantly, recall from the loss definitions of the many-to-many models (StarGAN-
VC2, AutoVC, StarGAN-ZSVC) in Chapter 3 that the parallel target utterance Xtrg
is not present – i.e. the models can be trained with non-parallel data. However, the
one-to-one baseline models do require parallel data, and thus the dataset splits are different
in Figure 4.1 where each sample for the one-to-one models is a parallel pair of utterances
from SF1 and SM2. Meanwhile, each sample for the many-to-many models is only an
individual utterance from a speaker.

This makes comparison difficult since the precise utterances the one-to-one and many-to-
many models are trained on are different, however we try overcome this in the next chapter
by providing two sets of results for the many-to-many models in seen-to-seen conversion:
one where they are evaluated on the test utterances of the one-to-one models (which might
have been seen during training), and another set of evaluations on all utterances from the
many-to-many speaker’s test dataset (covering all 4 seen speakers).

4.1.2. Speaker embedding model
The speaker embedding model of Section 3.3 is pretrained on a large external corpus.
Namely, it is trained on 90% of the utterances from a combined dataset consisting of
the VCTK [50], VCC 2018 [1], LibriSpeech [51], and the English CommonVoice 2020-06
datasets1. This data amounts to over 30 hours of training data and is decidedly not
low-resource. However, in a practical situation it can be trained on a massive external
corpus and still work well for out of domain speakers – as shown in the original work [42]
and our experiments. In fact, in our experiments we found that after training it on only the
combined English dataset above, it was still able to effectively separate embeddings from
Afrikaans utterances from native Afrikaans speakers in the NCHLT Afrikaans dataset [52].

The embedding model is trained with the Adam optimizer [21] for 8 epochs with 8
speakers per batch, and 6 utterances per speaker in each batch following the loss function
outlined in Section 2.4.5. We start with a learning rate of 4×10−4 and adjust it downwards
each epoch to 3× 10−7 in the final epoch. We use a similar training process defined in
Section 4.4 adapted for the speaker identification task appropriate for the GE2E model.
Finally, when training all the other VC models, embeddings for the VCC 2018 speakers
are precomputed by taking the average embedding over 4 arbitrary utterances for each
speaker.

4.2. Software and tooling
All experiments are performed in the Python programming language using Jupyter note-
books for ease of experimentation. Primarily three large software packages are used in
the training and evaluation of each model – the Pytorch software package for various
neural network related functionality; the librosa audio library for audio manipulation and
feature extraction; and the Fastai library for various data loading and training utilities.
Detailed descriptions and motivations for the use of each software technology is given in
Appendix D.

1Available under a CC-0 license at https://commonvoice.mozilla.org/en/datasets
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4.3. Vocoder and feature extraction
As a first step, we use the librosa library to resample all audio in the dataset to a standard
22.05kHz sampling rate. In our experiments we use log Mel-scale spectrograms (often just
called Mel-spectrograms), with one exception. Concretely, the Mel-scale spectrograms use
m = 80 Mel-frequency bins and are clamped such that any value below 10−5 is fixed to
10−5. The STFT used to construct the spectrograms have a window and hop length of
1024 and 256 samples, respectively. The natural logarithm is then taken to obtain the
Mel-spectrogram.

Some of the models using these Mel-spectrograms further scale each Mel-spectrogram
to roughly be in the range (−1, 1) by assuming the minimum Mel-spectrogram value to
be −11.52 and scaling the mean and standard deviation by half this value. I.e. given a
value from a log Mel-scale spectrogram z, we scale it: z+5.76

5.76 . The AutoVC and one-to-one
models perform this scaling proces, while the StarGAN-VC2 and StarGAN-ZSVC do not.
We found this setup to give the best results on the validation set of each model.

The vocoder we opt for is the WaveGlow vocoder by NVIDIA due to its reasonably
high performance while remaining sufficiently fast. The same WaveGlow vocoder is used
to produce output waveforms for all networks (with the same exception for StarGAN-VC2)
to ensure a fair comparison. The WaveGlow model is pretrained on a large external corpus,
as provided by the original paper [13]. However, since most models use Mel-spectrogram
inputs and produce Mel-spectrogram outputs, we rather perform all objective comparisons
on the spectrograms of each utterance (instead of waveforms), in order to minimize the
confounding effect from the vocoder.

Our WaveGlow implementation takes approximately 240 ms to produce one second of
vocoded audio (taking a spectrogram as input). For the full voice conversion system to
be faster than real-time, this means that the combined inference speed of the remaining
sub-networks needs to be well under 700ms/s, or preferably significantly faster if used for
data augmentation.

The one exception mentioned earlier is the StarGAN-VC2 model, which is specially
designed to only operate on MFCCs using the WORLD feature extractor and vocoder [8].
While all the other models use the Mel-spectrogram and WaveGlow setup defined above,
StarGAN-VC2 uses the WORLD vocoder setup described in Section 3.2. Thus for this
model we use the WORLD feature extractor and vocoder with a 36-dimensional MFCC. To
compare to the other models, we convert the vocoded waveform outputs of StarGAN-VC2
back into log Mel-scale spectrograms. The WORLD vocoder is somewhat faster to the
WaveGlow vocoder, taking roughly 10 ms to vocode a second of audio.

4.4. Training framework
Training is performed using the Fastai framework using the standard method for training
DNNs outlined in Chapter 2, where the DNN optimized is the one that performs the central
mapping function of the full VC system – i.e. we assume the speaker embedding network
and vocoder models to be pretrained as specified in Section 4.1.2 & 4.3. It consists of
three main processes: loading the data, defining the model and loss function, and running
the training loop. Each step differs slightly between the one-to-one and many-to-many
models, however the general procedure is given in the following subsections. Each model
is trained by running various Python cells inside a Jupyter notebook environment.
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4.4.1. Data loading
This step occurs once at the beginning of training, and its objective is to yield a Python
data loader object that can be repeatedly called to return minibatches of training data
for a given model. Since each utterance only needs to be converted to Mel-spectrogram
(or MFCC for StarGAN-VC2) once, it is done as a preprocessing step before any training
commences using the method defined in the previous section. Each Mel-spectrogram is
then saved to a solid-state drive (SSD) and loaded as needed during training.

We implement the Mel-spectrogram transform as a modified version of the Mel-
spectrogram transform provided by librosa and another implementation by the authors
of the WaveGlow vocoder [13, 53], adapted to work for the VCC 2018 dataset with our
22.05kHz sampling rate.

To construct the desired data loader, the Fastai Data Blocks software interface is
used [49]. In it, we define a dataset object which can be invoked with a file url to return a
single sample of training data. Then, hyperparameters for the dataloader are set up (such
as batch size, source file paths, train-valid-test splits) and transforms defined for collating
several samples together into a minibatch.

The primary transform applied is that of random segment sampling. Concretely, during
training, for each batch we randomly sample a k-frame sequence from each Mel-spectrogram,
where k is randomly sampled from multiples of 32 between 96 to 320 (inclusive). This
is done for all models to make them robust to utterance length. An exception is made
for StarGAN-ZSVC and StarGAN-VC2, which both use a discriminator that requires
fixed-size inputs. This leads to slightly worse performance for the GAN-based systems
for long or silence-padded sequences. Thus, when performing comparisons, we will only
compare on non-silent frames of the target spectrogram (discussed further in Section 4.5).

This full data loading process is summarized in Algorithm 4.2, which shows the process
called to construct a single batch of training data. Fastai then uses this procedure for
obtaining a single batch to construct a full data loader object which automatically performs
all the other standard tasks required by a dataloader. For example, it automatically shuffles
the order of training data items once they have been exhausted (i.e. once an epoch has
finished) and keeps track of the train-validation-test splits.

4.4.2. Model and loss definition
Once the data object has been defined, the second step to produce a trained model is
to instantiate a specific VC model instance – i.e. to create the DNN architecture of the
particular VC mapping model under consideration in GPU memory. This is done also
using the Pytorch and Fastai libraries in a straightforward process following the model
and loss definitions of the previous chapter.

First, an instance of the DNN model (defined in a Python script) is created in the
Jupyter notebook using the specific hyperparameters associated with each model in
Chapter 3. Second, the loss function for the specific model is defined as a python function.
Third, the model instance, loss function, and data loader object are used to instantiate
a Fastai Learner object. This Learner has all the required knowledge to perform the
training loop, and contains other utilities for saving models and logging training statistics.
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Algorithm 4.2: Procedure to load a batch of training data for a model, given a list of b filenames
where b is the batch size. The model’s specific speaker representation and spectrogram form is
used where appropriate (e.g. one-hot vs speaker embedding, or Mel-spectrogram vs MFCC).

Initialize empty arrays of source and target spectrograms
Initialize empty arrays of source and target speaker representations
Sample k from multiples of 32 between 96 and 320 (inclusive).
for filename in filenames do

Sample target speaker from all training speakers and load its representation.
Load filename and parallel target speaker spectrogram into memory.
Sample k frames from both spectrograms at a random start frame.
Scale spectrograms according to Section 4.3.
Parse source speaker from filename and load its representation.
Append source & target spectrograms & speaker representations to respective arrays.

end for
Stack all source & target spectrograms together into single tensors.
Stack all source & target speaker representations into single tensors.
Move all tensors to GPU memory.
if model is one-to-one then

return (source spectrogram tensor, target spectrogram tensor)
else

return (source spectrogram tensor, source speaker tensor, target speaker tensor)
end if

4.4.3. Training loop
We now use the Learner object to train each VC model. Two similar processes are followed
for the non-GAN methods and the GAN-based methods (StarGAN-VC2 and StarGAN-
ZSVC). The precise details of the two training processes are detailed in Appendix D.2.
Intuitively, for the non-GAN methods we follow the process outlined in Section 2.3.2 using
the Adam optimizer with typical settings and a learning rate determined by a special
technique developed by Smith [54]. Similarly, for GAN-based methods follow the procedure
outlined in Section 2.3.6, adapted for the StarGAN loss function. An Adam optimizer is
again used but with a reduced momentum. Several special techniques are employed to
ensure the GAN training remains stable. These techniques, along with more detail about
the precise steps in the training loop are given in Appendix D.2.

4.4.4. Failed efforts
To get to the precise training setup defined in the previous few sections required a significant
amount of investigation and trail and error of various techniques. Ultimately the final
training configuration used was the outcome of a long series of experiments with different
training techniques and settings. A summarized list of the various techniques used to try
train each model, along with which ones were successful and which failed along with our
hypothesis for such success/failure is given in Appendix E.

4.5. Objective evaluation
We compare converted output spectrograms to their ground-truth target spectrograms on
the test dataset using several objective metrics. To account for different speaking rates,
we first undo the scaling done on the Mel-spectrograms as described in Section 4.3 and
then use dynamic time warping (DTW) to align the converted spectrogram to the target
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spectrogram, and then perform comparisons over non-silent regions of the target utterance.
Non-silent regions are defined as those 80-dimensional spectrogram frames where the mean
vector element value is greater than -10dB (or simply -10 if comparing values of the log
Mel-scale spectrogram).

For each trained model, the process to obtain objective comparisons is as follows: (i)
converted spectrograms are obtained on the test set for each model, then (ii) any scaling
done for spectrograms of a particular model as per Section 4.3 is reversed, and finally (iii)
the converted spectrograms are aligned to the target spectrograms with DTW and the
frames were the target spectrogram is silent are ignored. Any metrics are then computed
on these aligned log Mel-scale spectrograms. The objective metrics computed aim to
evaluate how well each model performs the VC task in a low resource context (requirement
3 of Section 1.2), or to measure each models speed (requirement 4 of Section 1.2).

For StarGAN-VC2 which produces MFCCs, we use the WORLD vocoder to generate
converted waveforms Xsrc→trg and then perform the Mel-spectrogram transform on them
to allow comparison to the spectrograms generated by the other models.

4.5.1. Dynamic time warping
Since a converted utterance might not be spoken at the same rate or with the same pace
as the target utterance, we first align the converted Mel-spectrogram Xsrc→trg to the target
spectrogram Xtrg using dynamic time warping (DTW).

The precise details of the technique are beyond the scope of this project, and we
simply use it as a practical method to compare converted spectrograms to the ground
truth spectrograms. Intuitively, DTW aims to find a warping path (list of mappings of
indices between the converted spectrogram and target spectrogram frames) by computing
a distance metric between each pair of converted-target spectrogram frames and using
these distances to form a so-called ‘cumulative distance matrix’ [55]. This cumulative
distance matrix is then traversed according to a set of rules to find the optimal warping
path, which may be non-linear.

We use librosa’s DTW implementation [53] to obtain this optimal warping path and
then map each frame of the converted spectrogram to its associated frame index of the
target spectrogram.

4.5.2. Mean absolute error
The first metric we use to compare Xsrc→trg and Xtrg is the mean absolute error (MAE)
between the two. To calculate the MAE between the two Mel-spectrograms we phrase
both as a 2D matrix and take the element-wise absolute difference between the two.
We then take the mean absolute difference to arrive at the MAE, only including the
Mel-spectrogram frames from non-silent frames.

This gives a simple numerical representation of how far apart the generated spectrogram
is from being an ideal conversion, however this comparison is not perfect as multiple valid
conversions could exist and the ground truth Xtrg represents only one such possibility.
Such a comparison also penalizes slight pitch differences harshly, however it remains a
reasonable first-glance metric of performance.
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4.5.3. Cosine distance
To help overcome some of the shortcomings of a pure MAE comparison, we also compute a
cosine similarity by finding the cosine distance between each 80-dimensional source/target
frame pair of the Mel-spectrograms and then computing the mean cosine distance over all
non-silent frames (after DTW alignment). This metric, which we denote as cos(θ), gives
an additional measure of conversion quality.

This measurement is included in comparisons because its shortcomings in measuring
the semantic quality of conversions does not completely overlap with that of the MAE
measurements. This means that if both MAE and cos(θ) metrics are better for a particular
model, we can be more confident that it is indeed producing higher quality conversions.

4.5.4. Embedding difference
The previous two metrics primarily looked at the quality of conversion in hopes of measuring
how natural the converted spectrogram sounds. However, that is only one aspect of VC. A
high performing VC system also needs to ensure that the converted spectrogram sounds as
if it were spoken by the target speaker. I.e. the converted utterance must be both realistic
human speech and interpreted as being spoken by the desired target speaker.

To address this second aspect of VC performance, we introduce an embedding differ-
ence measurement ||∆s||. This difference is the Euclidean norm of the vector difference
between two speaker embeddings. For comparison of VC quality, we compare the speaker
embeddings of the converted and target utterance. I.e. ||∆s|| = ||ssrc→trg − strg||2, where
ssrc→trg = E(Xsrc→trg) using the trained speaker embedding model of Section 4.1.2.

This metric gives us a smaller value when the converted utterance’s speaker identity
is close to the desired target speaker identity, and a larger value when the converted
utterance sounds like it is spoken by any other speaker. Thus this measurement gives an
objective way to measure how close the converted speaker identity matches the target
speaker identity and thereby helps profile the performance of a VC model.

4.5.5. Speed
Finally, to measure the speed of a VC model we simply record the time it takes to convert
one second of audio. In all measurements of speed, we measure the time taken to convert
several different utterances and then divide the total time taken by the total length of the
utterances, yielding a measurement of number of seconds required to convert one second of
audio. This metric is typically expressed in milliseconds (of converted audio) per second,
or ms/s.

Note, however, that this measurement is only of the core VC model and does not
include the compute time of the speaker embedding model (since that may be done as a
preprocessing step in practical applications), the vocoder (which takes 240ms to vocode
one second of audio as discussed in Section 4.3), and feature extraction (which is a near
instant FFT combined with a filtering operation taking less than 10ms) steps.

4.6. Subjective evaluation
Noting that many of the objective metrics have substantial inadequacies, we also perform
perceptual experiments to evaluate the quality/performance of the conversions for each
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model. For these experiments, we recruited 12 proficient English speaking adults to listen
to 100 utterances each (totalling 1200 utterances evaluated) and rate their naturalness
(how realistic they sound) on a scale from 1 to 5, 1 being ‘bad’ and 5 being ‘excellent’. The
100 utterances are comprised of several subsets of data to assess several different models in
different settings (for example, 8 utterances are from AutoVC evaluated when converting
from seen speakers to unseen speakers).

The mean score for each utterance grouped by subset is then averaged to yield a mean
opinion score (MOS) where the larger the score, the more natural sounding the waveforms
are interpreted to be by human listeners. The perceptual experiments were performed
using a Flask server running on Google Cloud App Engine and using JourneyApps Oxide
to record the responses. These technology choices were chosen for their ease of use and
low setup time compared to alternatives. The server ensures that each listener receives
the utterances in random order with randomized utterance names to make the comparison
as fair and consistent as possible.

We also evaluate the trained GE2E speaker embedding model by visually inspecting
how well utterances of different speakers are separated when the embeddings are projected
onto a two dimensional image using the t-SNE dimensionality reduction technique [56].
The details of the t-SNE algorithm is beyond the scope of the project, and it is used purely
to obtain a reasonable visualization of the d = 256 dimensional speaker embeddings s to
allow for visual confirmation that the speaker embedding network is working correctly.

4.7. Summary
With the various models defined in Chapter 3, we proceeded in this chapter to concretely
define the setup used to conduct our experiments. In the following chapter we will
utilize this setup to conduct several experiments to test how well each model satisfies the
practicality requirements of Chapter 1.

In particular, this chapter looked at how the low-resource dataset is configured in
Section 4.1. We then proceeded to describe the software implementation details for the
dataset and how spectrogram and vocoding process are performed. Finally we looked at
how each model is trained in Section 4.4 and then concluded with the various metrics that
will be used extensively in the experiments of the next chapter.



Chapter 5

Experiment Results
With the models and experimental setup defined, we now proceed to enumerate the various
experiments we ran on each model and the results of such experiments in our quest to
profile the extent each model satisfies the four practicality requirements of Chapter 1.
Concretely, the ability to perform zero-shot conversion and be trainable with non-parallel
data are determined by each individual model architecture as defined in Chapter 3.

Thus this chapter aims to determine to what extent each model satisfies the final
two requirements – measuring the VC model’s performance on a low resource dataset
and measuring its inference speed. The dataset described in Section 4.1 comprises just
under 9 minutes of recorded audio – very low-resource context indeed. Since all models in
this chapter are trained on this small dataset, all performance metrics computed give an
indication of low-resource performance. Furthermore, the speed of each model at inference
is independent of the training data, and such speed measurements will be valid in all
contexts on the same hardware.

This chapter beings with experiments confirming the efficacy of the speaker embedding
model. This is then followed by a set of objective and subjective evaluations of each model.
Finally, a performance summary of each model is given.

5.1. Speaker embeddings
Before evaluating each VC model, we need to assess whether the speaker embedding model
is successful in its task. A low loss on the validation and test set has little semantic
meaning – how precisely a lower value for the loss of Section 2.4.5 translates to better
embeddings is not clear.

Thus instead we opt for a visual confirmation that the trained model is performing
successfully. Recall from Section 4.1 that the speaker embedding model is trained on a
very large combined corpus over several datasets. So, to visually assess its performance we
obtain the speaker embeddings for 12 utterances for each of 8 unseen speakers from the
test set of speakers. We then project these 12× 8 embeddings onto a 2-dimensional plane
and plot the projected embedding of each utterance on a scatter plot.

The result of such a projection is shown in Figure 5.1 which plots the projections
from utterances in the first two batches taken from the (shuffled) test set. Two different
projection techniques are shown for two different batches of test data to give multiple
perspectives. First, principal component analysis (PCA) is used to project the embeddings
onto the first two principal components. This embedding technique is not particularly
sophisticated and, as we can observe from the figure, shows some overlap between utterances
by different speakers. However, overall from Figure 5.1a we observe that embeddings from
utterances by different speakers are separated very well and that embeddings of utterances
from the same speaker are close to one another.

The t-SNE projection in Figure 5.1b strongly supports this. It shows that the speaker
embedding model is performing very well – strongly grouping embeddings of different
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Figure 5.1: 2D projections of a batch of utterance embeddings from several speakers
unseen during the training of the speaker embedding model. Each utterance embedding
is colored by speaker. Two projections are given: (a) the PCA projection, and (b) the
t-SNE projection.

utterances from the same speaker and doing the opposite for utterances by different
speakers. For the t-SNE projection we use sklearn’s implementation with a perplexity of
10, keeping all other hyperparameters as their default values [57].

Recall that both projections are on utterances by speakers never seen during training
of the embedding model. And, since the embedding model seems to exhibit very good
performance and behavior in generating speaker embeddings, we conclude that it will be
successful and useful in obtaining speaker embeddings for use in zero-shot VC. Finally,
we measured the time taken to obtain one speaker embedding given an input utterance
of 2.1 seconds. Such an embedding required (on average) 13.1 ms to compute. This is
sufficiently fast for nearly all VC applications, especially considering that obtaining the
speaker embedding may be done once as a preprocessing step in most VC applications.

5.2. Objective evaluation
We perform two sets of experiments. First we perform an evaluation on seen speakers, where
we compare StarGAN-ZSVC to all other models to obtain an indication of both speed and
performance in the traditional seen-to-seen VC task. We then compare StarGAN-ZSVC
with AutoVC for zero-shot voice conversion (since they are the only two models capable of
zero-shot conversion), looking at both the output and cyclic reconstruction error.

5.2.1. Seen-to-seen conversion
In the first set of comparisons, we evaluate the performance metrics defined in Section 4.5
for test utterances where other utterances from both the source and target speaker have
been seen during training. I.e., while the models have not been trained on these exact
test utterances, they have seen the speakers during training. There is, however, a problem
in directly comparing the one-to-one models (traditional baselines) to the many-to-many
models (AutoVC, StarGAN-VC2, and StarGAN-ZSVC). The one-to-one models are trained
on parallel data, always taking in utterances from one speaker as input (VCC2SF1 in our
case) and always producing output from a different target speaker (VCCSM2).

In contrast, the many-to-many models are trained without access to parallel data,
taking in input utterances from several speakers (4 speakers, including VCC2SF1 and
VCCSM2 in our case, as explained in Section 4.1). This means that the one-to-one and
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many-to-many models observe very different amounts of data. Moreover, while the data for
both the one-to-one and many-to-many models are divided into the train-test-validation
split of Section 4.1, the same exact splits aren’t used in both setups; this is because the
former requires parallel utterances, and the split is therefore across utterance pairs and
not individual utterances.

Experiment

To address this, we evaluate the many-to-many models in two settings: on the exact same
test utterances as those from the test split of the one-to-one models, as well as on all
possible source/target speaker utterance pairs where the source utterance is in the test
utterances for the 4 seen training speakers. In the former case, it could happen that
the many-to-many model actually observes one of the test utterances during training.
Nevertheless, reporting scores for both settings allows for a meaningful comparison. The
results of this evaluation on seen speakers are given in Table 5.1. Note that the speed
metric only records the speed of the core VC model and does not include the speed of the
vocoder or waveform feature extraction.

Discussion

The results indicate that AutoVC appears to be the best in this evaluation on seen speakers.
In both settings it has the lowest MAE and ||∆s|| metrics in addition to having the highest
cosine similarity. This means that the generated spectrograms from AutoVC are closer to
the true target spectrograms than other models. However, this comes at a computational
cost: the linear, StarGAN-VC2, and StarGAN-ZSVC models are much faster than the
models relying on recurrent layers like DBLSTM and AutoVC.

In terms of speed, StarGAN-ZSVC and the linear baseline model are the fastest. It is
interesting to note that StarGAN-ZSVC is significantly faster than StarGAN-VC2 despite
the model architectures appearing so similar. The exact reasoning for this is not entirely
clear, however we suspect the reasoning is due to minor architecture optimizations added
to StarGAN-ZSVC over StarGAN-VC2.

Table 5.1: Objective evaluation results when converting between speakers where both
the source and target speaker are seen during training. For all metrics aside from cosine
similarity (cos(θ)), lower is better. The first many-to-many model entries correspond to
evaluations on the one-to-one test utterances, while the starred many-to-many entries
correspond to metrics computed when using the test utterances from all seen training
speakers for the many-to-many models.

Model MAE cos(θ) ||∆s|| Speed (ms/s)

Linear 1.277 0.980 0.863 0.151
DBLSTM 1.329 0.982 0.510 12.5
UNet 1.370 0.980 0.550 101
StarGAN-VC2 1.172 0.981 1.035 6.44
AutoVC 0.993 0.987 0.257 11.0
StarGAN-ZSVC 1.092 0.977 0.508 1.88

StarGAN-VC2* 1.180 0.981 0.992 6.44
AutoVC* 1.000 0.987 0.321 11.0
StarGAN-ZSVC* 1.008 0.983 0.321 1.88
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For example, the instance normalization layers of StarGAN-VC2 do not purely use
the mean and standard deviation of an incoming tensor, but rather utilize a running
average of the mean and standard deviation. These means and standard deviations entail
a substantial additional number of parameters for the model and need to be updated
whenever the model is called – slowing it down. Other smaller optimizations include
removing the superfluous bias term added in convolution layers which are followed by an
instance normalization layer (since the instance normalization layer already includes a
trainable bias).

Returning to performance, StarGAN-VC2 and StarGAN-ZSVC are fairly close to
AutoVC in terms of the metrics. StarGAN-VC2 fails somewhat on the ||∆s|| metric likely
because it never sees the embeddings generated by the embedding network, requiring it
to learn its own embeddings. This requirement along with the many-to-many nature of
StarGAN-VC2 causes it to seemingly learn how to convert between a ‘generic male voice’
and a ‘generic female voice’ as opposed to more finely differentiated speaker identities
of SM1, SM2, SF1, SF2. So the speaker embedding difference is large since the speaker
embedding network still strongly differentiates embeddings for speakers of the same gender
that sound similar (Figure 5.1).

5.2.2. Zero-shot conversion
We now proceed to compare StarGAN-ZSVC with AutoVC in zero-shot settings, since
these are the only two models capable of performing zero-shot VC. In these zero-shot
experiments we will not only profile the standard speaker A→B conversion, but also the
same metrics evaluated on the cyclic reconstruction of utterances. That is, we perform the
cyclic mapping (as defined in Section 2.3.6) whereby an utterance from a source speaker
can be converted to a target speaker and then back to the source speaker. We can use this
cyclic reconstruction of the source spectrogram as another source for evaluation, where we
compare how well the original spectrogram is reconstructed when performing this cyclical
mapping (i.e. we compare Xsrc→trg→src to the ground-truth Xsrc).

Experiment

Results for zero-shot conversion are shown in Table 5.2. It includes evaluations on three
different experiments, for each possible zero-shot source/target speaker pairing. Concretely,
we compute the metrics of Section 4.5 between the converted output and ground-truth
target utterance (standard prediction metrics) and between the cyclic mapping and original
source utterance (reconstruction metrics) for three cases.

The first case is the seen-to-unseen, where the source speaker has been seen during
training but the target speaker is unseen during training. Similarly, a separate set of
metrics is computed for conversions from unseen speakers to speakers seen during training
(unseen-to-seen) and for pure zero-shot conversion where both the source and target speaker
are unseen during training (unseen-to-unseen).

Discussion

The performance for AutoVC and StarGAN-ZSVC are similar on most metrics for the
unseen-to-seen case. But for the seen-to-unseen case and the unseen-to-unseen case
StarGAN-ZSVC achieves both better prediction and reconstruction scores. Both models,
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Table 5.2: Objective evaluation results for zero-shot voice conversion for AutoVC and
StarGAN-ZSVC. The prediction metrics compare the predicted output to the ground-truth
target, while the reconstruction metrics compare the cyclic reconstruction Xsrc→trg→src
with the original source spectrogram. For all metrics asidie from cosine similarity (cos(θ)),
lower is better.

Prediction Reconstruction

Setting Model MAE cos(θ) ||∆s|| MAE cos(θ) ||∆s||

Seen-to-unseen AutoVC 1.246 0.982 0.742 1.178 0.976 0.392
StarGAN-ZSVC 1.030 0.982 0.705 0.197 0.997 0.124

Unseen-to-seen AutoVC 1.014 0.986 0.328 1.201 0.975 0.753
StarGAN-ZSVC 0.974 0.985 0.380 0.921 0.986 0.760

Unseen-to-unseen AutoVC 1.238 0.981 0.746 1.340 0.968 0.827
StarGAN-ZSVC 1.079 0.982 0.742 0.921 0.986 0.760

however, have worse scores on the zero-shot case. This is to be expected, since the zero-shot
VC task is harder than the traditional one where the speakers are seen during training.

From the table, AutoVC appears to not be able to generalize well to unseen speakers
when trained on little data, with its performance converting to unseen speakers greatly
reduced. This observation will be repeated in the next section and is one of the failings
of AutoVC – its zero-shot performance degrades significantly in a low-resource context.
StarGAN-ZSVC does not appear to suffer such degradation in the zero-shot case and
outperforms AutoVC in most zero-shot applications on the objective metrics evaluated.
This, coupled with its fast inference speed (Table 5.1), enables it to be used efficiently
and effectively for downstream data augmentation purposes. Most importantly, StarGAN-
ZSVC’s retention of good performance in the zero-shot setting indicates that it satisfies
the third practicality requirement of Section 1.2 moderately better than AutoVC.

5.3. Subjective evaluation
The objective evaluations performed in the previous section have shortcomings since they
not perfectly represent the conversion quality as perceived by humans. Thus we perform a
series of subjective evaluation experiments according to the setup defined in Section 4.6.
The 1200 utterance evaluations by listeners are comprised of 14 subsets of data which
are used to evaluate the performances of different models in different situations. The
breakdown of the subsets included in the survey are given in Appendix F.

In addition to the MOS values calculated from the subjective evaluation, we also strongly
encourage the reader to both observe sample converted spectrograms (in Appendix F) them-
selves and listen to converted samples (at https://rf5.github.io/skripsie/about) to
further inform their assessment of the relative performance of each model. In the following
two sections we give the results of the MOS in two related sets of experiments.

5.3.1. Seen-to-seen conversion
Evaluating the MOS for all ratings from the subsets of Appendix F involving seen-to-
seen conversion, we obtain the scores given in Figure 5.2. The figure requires several
comments. First, our measured MOS values for AutoVC, StarGAN-VC2, and DBLSTM
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are substantially lower than those reported by the original authors [8, 9, 36], despite using
similar MOS evaluation procedures.

The reasons for this are different for each work. For AutoVC and DBLSTM, the
original work uses substantially more data to train each model. Our work shows their
performance on a very low-resource 9-minute training set, hence the lower MOS score.
Additionally, both authors leave out substantial detail in their training procedure and
hyperparameters which makes re-implementation difficult and imperfect. This problem is
exasperated for StarGAN-VC2, where the authors provide no source code and the original
paper has an error in the model definition (as described in Section 3.2). These model and
training ambiguities of the original model ultimately caused our implementation to have a
substantially lower MOS than the original authors.

However, with the MOS values in our evaluation in Figure 5.2 we can see a clear trend.
The proposed StarGAN-ZSVC model outperforms all the other models by a substantial
margin, indicating it has better low-resource performance than all other models analyzed.
AutoVC and StarGAN-VC2 have similar scores which are better than the simple one-to-one
baseline models, which is in line with their performance rankings from the literature. The
DBLSTM performs slightly better than the UNet and linear model, which performed the
worst.

To put the values into context, several raw source utterances and vocoded source
utterances were included in the analysis, yielding a MOS of 4.86 and 4.33 respectively.
Thus, since all the models (aside from StarGAN-VC2) use the same vocoder, 4.33 represents
an upper bound on the MOS for any model. In light of this, the StarGAN-ZSVC MOS of
2.69 yields a marginally convincing (but decidedly not perfect) voice conversion output.
Sample converted spectrograms for each model is also included in Appendix F to provide
additional perspective. In the Figures of Appendix F we again observe that the converted
spectrograms of StarGAN-ZSVC appear more ‘natural’ (similar in texture to the target
utterance) than other models, supporting the conclusions of the MOS values in Figure 5.2.

In summary, the data indicates that (at least on the traditional seen-to-seen VC task)
StarGAN-ZSVC satisfies practicality requirement 3 of Section 1.2 better than all other
models analyzed.

StarGAN-ZSVC AutoVC StarGAN-VC2 DBLSTM UNet Linear
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Figure 5.2: Mean opinion score for seen-to-seen conversions from each model with 95%
confidence intervals shown, as evaluated from listening tests by 12 proficient English
speakers.
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5.3.2. Zero-shot conversion
To assess whether the improved performance of StarGAN-ZSVC is retained in the zero-shot
setting, and to provide further evidence for the results of Section 5.2.2, we perform a series
of zero-shot listener tests. In particular, we find the MOS values for StarGAN-ZSVC and
AutoVC (the only models capable of zero-shot inference) in all zero-shot settings according
to the subsets outlined in Appendix F. The results are shown in Figure 5.3. The MOS
values in this plot are directly comparable to that of Figure 5.2 because they form part of
the same listening test as defined in Section 4.6.

seen-to-unseen unseen-to-seen unseen-to-unseen
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StarGAN-ZSVC
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Figure 5.3: Mean opinion score for zero-shot conversions from StarGAN-ZSVC (blue)
and AutoVC (red) with 95% confidence intervals shown, as evaluated from listening tests
by 12 proficient English speakers.

The results support our previous objective metric evaluation and the seen-to-seen
subjective comparison in the previous subjection – StarGAN-ZSVC retains reasonable
performance in the zero-shot setting and is moderately better than AutoVC in all zero-shot
settings considered. This is supported by the zero-shot converted spectrograms from each
model in Appendix F (Figures F.7 & F.8), where we can clearly see that StarGAN-ZSVC’s
converted spectrograms are structurally more realistic and closer to the target utterance.

In Figure 5.3 we observe that AutoVC takes a marginal hit in performance in all three
zero-shot cases (comparing it to its seen-to-seen MOS in Figure 5.2), while StarGAN-ZSVC
appears to retain its performance for seen-to-unseen and unseen-to-seen conversion but
decreases in performance considerably in the harder unseen-to-unseen zero-shot case.
StarGAN-ZSVC’s unseen-to-unseen MOS is, however, still higher than the scores of any
model in the seen-to-seen VC task of Figure 5.2, indicating that its performance is still
considerable even in the hardest zero-shot task.

In summary, these subjective evaluations agree largely with the objective evaluations
of the previous section, with StarGAN-ZSVC appearing to perform better than the other
models by an even greater margin in the subjective evaluation. Thus we can confidently
state that StarGAN-ZSVC better satisfies practicality requirement 3 better than the other
models considered.

5.4. Summary
In this chapter we performed several objective and subjective evaluations on the models
of Chapter 3 using the experimental setup defined in Chapter 4. We performed two
sets of evaluations – an objective evaluation using metrics computed on the converted
spectrograms and another set of subjective listening tests. In both cases, it was evident
that the designed StarGAN-ZSVC and AutoVC were the top performing models, with
StarGAN-ZSVC performing the best in zero-shot conversion.
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This chapter primarily evaluated the speed of models and their performance/quality in
a low-resource setting – two of the practicality requirements of Chapter 1. Meanwhile, the
model architectures of Chapter 3 determine their limitations in terms of their ability to be
trained with non-parallel data and their ability to perform zero-shot VC – the other two
practicality requirements of Chapter 1. Summarizing the results of the experiments and
design limitations, we qualitatively describe how well each model satisfies the practicality
requirements in Table 5.3.

Table 5.3: Summary of the extent to which each model satisfies the four practicality
requirements of Chapter 1, showing a qualitative description of how well each model
satisfies each requirement.

Model Non-parallel
trainable

Zero-shot
capable

Performance in low-
resource setting

Speed

Linear No No Very poor Very fast
UNet No No Poor Very slow
DBLSTM No No Marginally poor Marginally slow
StarGAN-VC2 Yes No Moderate Moderate
AutoVC Yes Yes Moderate Marginally slow
StarGAN-ZSVC Yes Yes Good Fast



Chapter 6

Summary and Conclusion

6.1. Problem and objective
In this project we investigated several different techniques for voice conversion and at-
tempted to adapt recent VC systems to work better in practical settings. The aim in
performing these two tasks is to help enable the downstream applications of a practical VC
system, primarily for its use in data augmentation for other natural language processing
tasks or for use in the entertainment and gaming industry. These tasks are not readily
performed by existing systems because they fail to satisfy certain requirements needed for
practical use in downstream applications. These requirements are defined in Section 1.2,
and require that a VC system is fast, trainable with non-parallel data, high performing in
low-resource contexts, and is able to perform zero-shot VC.

6.2. Literature and model design
To address these two related tasks, we first provided a background of the relevant VC
theory and terminology along with descriptions of related work in the VC literature in
Chapter 2. We then proceeded to identify and concretely define five existing models
from the literature that covered a range of sophistication and neural network techniques.
Upon realizing that none of the existing techniques satisfy all practicality requirements
we adapted the StarGAN-VC2 by using a speaker encoder introduced with the AutoVC
model to generate speaker embeddings which are used to condition the generator and
discriminator network on the desired source and target speakers. The resulting model,
StarGAN-ZSVC, can perform zero-shot inference and is trainable with non-parallel data.

6.3. Experiments and comparisons
With concrete specifications of these five models defined, we proceeded to build a series of
experiments to assess how well each satisfies the practicality requirements. This is done
using a carefully designed dataset, training setup, and feature extraction and vocoding
detailed in Chapter 4, whereby each model is trained in a low-resource setting and
experiments are defined to assess its performance in a low-resource setting and its inference
speed. The other two practicality requirements are determined exclusively by the VC
model design.

In a series of objective and subjective experiments comparing StarGAN-ZSVC to
the other five models from the literature, we found that no model perfectly satisfied
all practicality requirements perfectly. However, in both comparisons in the traditional
seen-to-seen VC task and in the zero-shot comparisons to AutoVC, we demonstrated
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that StarGAN-ZSVC scores better or similar objective and subjective metrics to all other
models considered. AutoVC and StarGAN-VC2 performed worse than StarGAN-ZSVC,
but better than the other baseline models considered. Using these results, as well as the
model definitions of Chapter 3 we summarized how well each model satisfies the practical
requirements in Table 5.3 – indicating StarGAN-ZSVC was correctly designed and built
to satisfy the requirements defined in Chapter 1 and be useful in practical applications.
To our knowledge this is the only model to satisfy these four practicality requirements to
the extent shown in Chapter 5.

6.4. Future work
With the StarGAN-ZSVC model designed and trained, and the other literature models
profiled, there are several further avenues of research and engineering that open up:

• The StarGAN-ZSVC model and training method can be used to build and implement
software packages and pipelines for downstream applications, such as a real-time
voice changer for streaming software or integration with game engines such as Unity.

• Realizing the promise of data augmentation, the StarGAN-ZSVC and other models
can be incorporated into existing programming libraries and packages to provide
integrated data augmentation for utterances when training other speech processing
systems.

• Further investigating the application of data augmentation, as discussed in Section 1.1,
it would be valuable to train downstream speech and natural languages processing
algorithms and compare the performance with and without using StarGAN-ZSVC
(or other VC models) for data augmentation.

• Increasing focus has been placed on transformer-based networks for various domain
translation tasks in vision and natural language processing recently, and it may
be valuable to consider designing a transformer-based VC system to assess the
transformer’s applicability for VC.

• The comparisons in this project only covered a very low-resource setting. It will be
valuable to scale the training to a much larger dataset and compare the performance
of the models again to assess how the performance of each model changes with
dataset size.

• The models chosen were all adapted from DNN-based models. Our comparison can
be expanded to include other types of models which do not require training and are
specifically tailored to work well in low-resource settings.
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Appendix A

Project Planning Schedule

Table A.1: Project planning schedule, showing rough date outlines planned for each
stage of the project. Dates are given in YYYY-MM-dd format.

Time span Planned progress

2020-04-05 to
2020-05-11

Planning and literature review. Learn and become familiar with deep
learning and speech processing software packages (Pytorch, librosa, Fastai).
Acquire hardware and software prerequisites (Linux, RTX 2070 GPU).

2020-05-11 to
2020-06-29

Get simple baseline vocoders and feature extraction blocks working –
complete Mel-spectrogram and WORLD vocoders and feature extractions,
and test them to make sure it is working. Complete GE2E speaker
embedding model design, implementation, and training.

2020-06-29 to
2020-07-21

Complete design, implementation, and initial training of all models. Gen-
erate preliminary results for each model, develop the training procedure
and code pipeline.

2020-07-21 to
2020-07-28

Complete initial consultation and improvement of models, data, and
training pipeline. Test each part of the software setup and remove bugs.

2020-07-28 to
2020-8-17

Start write-up of introduction of report. Retrain all models with the
previous tests and bug fixes implemented. Begin design of metrics and
evaluations to perform on each model. Generate initial results on validation
dataset.

2020-08-17 to
2020-08-31

Further consultation and improvement of testing and evaluation pipeline.
Sanity check results and debug and optimize the testing pipeline and
evaluation metrics. Complete first pass on literature review chapter in
report.

2020-08-31 to
2020-09-21

Create, code, and host the subjective listening tests for additional com-
parison metrics between models. Complete the model design chapter of
report. Perform initial review and consultation with supervisor about first
two chapters.

2020-09-21 to
2020-10-12

Tabulate and compile all final metrics on test set. Generate all relevant
figures for test set. Complete the experimental setup chapter of the report.

2020-10-12 to
2020-10-20

Complete results and conclusion chapter of report. Complete auxiliary
report requirements (outcomes compliance, formatting...).

2020-10-20 to
2020-11-04

Consultation and review of report with supervisor; fix all spelling errors
and ensure report maintains good flow. Setup final demonstration website
with generated audio samples.
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Outcomes Compliance
Table B.1: ECSA outcomes compliance, indicating the content in the report which
demonstrates compliance with each ECSA learning outcome for this project.

ECSA outcome Compliance

ELO 1. Problem solving: This project aimed to compare and deliver a practical voice conversion system. This
outcome is satisfied because: (i) The problem of developing a ‘practical’ VC system is
under-specified and required us to concretely specify and define what entails a practical
VC system (Section 1.2). (ii) The models profiled in Sections 3.1, 3.4, 3.2 are all well
beyond the scope of engineering codes and standards, and (iii) the solution developed
in Section 3.5 both draws on several complex models (one of which is even erroneously
defined by the original authors!) to construct a working VC system.

ELO 2. Application of scien-
tific and engineering knowl-
edge:

The knowledge of statistics, machine learning, and data science all played a pivotal role in
both defining each model in Chapter 3, defining our own StarGAN-ZSVC in Section 3.5,
and motivating the loss function and training choices described for each model and in
the literature review in Chapter 2. Mathematical and engineering sciences also is evident
in reasoning about and designing various comparison metrics in Section 4.5 and 4.6,
particularly with the introduction of the embedding norm difference ||∆s|| in Section 4.5.4.

ELO 3. Engineering Design: Procedural design and synthesis of components is used in describing, defining, and pro-
gramming the complex problem of utterance feature extraction and vocoding procedures
(given in Section 2.3.1, 3.3, and 4.3) by combining existing techniques from the literature
and the electronic engineering discipline. Non-procedural design is used extensively in
both designing the various models (StarGAN-ZSVC and StarGAN-VC2 in particular in
Sections 3.2 & 3.5), and in the numerous techniques investigated to attempt to train and
compare each model (a complex engineering problem), as expanded in Chapter 4 and
Appendix E.

ELO 4. Investigations, ex-
periments and data analy-
sis:

The project required construction of several metrics to evaluate and compare between
models, given in Section 4.5 and 4.6. These metrics and the entire experimental setup in
Chapter 4 provides strong evidence for competence in designing and conducting investi-
gations and experiments to compare each VC model. Selected knowledge in the literature
was used to construct the subjective evaluation metrics of Section 4.6, and the various
objective metrics are based on knowledge from the electronic engineering subfield of ma-
chine learning and data science. Substantial investigation into the appropriate literature
was conducted in Section 2.4.

ELO 5. Engineering meth-
ods, skills and tools, in-
cluding Information Tech-
nology:

The extensive use of various machine learning software packages (Pytorch, Fastai...) to
define, train, and compare each model is evident throughout Chapter 4 and Chapter 5. To
obtain the various results of Chapter 5 required the significant use of sophisticated, deep
learning specific software packages. Further web development software packages were
used in Section 4.6 (Flask, Google Cloud Compute) to conduct the subjective listening
tests as part of the investigation and results in Chapter 5.

ELO 6. Professional and
technical communication:

This outcome is demonstrated by this report in its entirety, the oral presentation, and
poster presentation (to be presented). The methods of providing information in this
report include conventional methods such as plots (e.g. Figure 5.1), system diagrams (e.g.
Figure 3.5), and tables (e.g. Table 5.1). All of these provide evidence that demonstrates
competence in communicating with engineering audiences and the community at large.

ELO 8. Individual work: All work, coding, and design decisions presented in this project are done alone, with the
sole advice from supervisor who was consulted on a weekly basis. The literature review of
Chapter 2, like the model design of Chapter 3, training and implementation in Chapter 4,
and actual experiments conducted in Chapter 5 are all performed personally by myself
(M. Baas).

ELO 9. Independent Learn-
ing Ability:

Independent learning ability is demonstrated by the literature review of Chapter 2, which
demonstrates independent learning of several advanced topics outside the scope of under-
graduate engineering – from deep learning in Section 2.3.2 to GANs (Section 2.3.6), and
speech representations (Section 2.3.1. Further learning is demonstrated by the acquire-
ment of skills in training, designing, and comparing complex DNN models in software
using Pytorch, as demonstrated by the experimental setup of Chapter 4 and results in
Chapter 5. Ethical considerations associated with the project are also given in Section 1.4.
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Appendix C

Speech representations supplement
C.1. The Mel-scale
The Mel-scale is an alternate scale of frequency (as opposed to the Hertz scale) which is
defined such that equal distances on the Mel-scale are interpreted as perceptually equal
distances by human listeners [18]. Although no unique formula exists to convert frequency
in Hertz to the Mel-scale, they all exhibit a logarithmic relationship. For all of our
implementations we use the equation defined by the audio processing library librosa [53]:

fmels = 2595 log10(1 + fHz

700) (C.1)

where fmels is the frequency value on the Mel-scale, and fHz is the original frequency in
Hertz.

C.2. The Mel-spectrogram
Using the Mel-scale, we can obtain a representation X of an input waveform X by first
performing a Short-time Fourier transform (STFT) of the input waveform. Next, to
convert it to the Mel-scale, we define a scalar number of Mel-frequency bins m. For the
work performed in this project, we define m = 80 in all our experiments. Now, we compute
m uniformly separated frequencies on the Mel-scale over some finite frequency range
[fmin, fmax]. Typically fmin = 0 Hz and fmax is set at just below half the sampling frequency
to ensure that the computed Mel-scale frequency bins cover all the meaningful information
present in the original STFT (in accordance with the Nyquist sampling theorem).

Next, since these Mel-scale frequency bins do not directly map to the frequency bins of
the original frequency bins of the STFT, a filtering operation is performed whereby, using
these m uniform Mel-scale frequencies, Mel frequency i serves as the center frequency
of a triangular filter that spans from the previous Mel frequency i − 1 to the following
frequency i+ 1. The height of each triangular filter is set to have a maximum amplitude
of 1 at its center frequency, and then further normalized by dividing the magnitude of
the filter by the width of the triangle (in Hertz). Performing such a process yields a set
of discrete triangular filters as shown in Figure C.1. The hyperparameters of the Mel
filters and STFT given in Figure C.1 are the ones used for the experiments in this project,
chosen based on the sampling rate of the VCC dataset [1] (discussed in Chapter 4).

To obtain the Mel-scale spectrogram, the dot product is taken between each of the m
filters and each frame of the STFT magnitudes – the phase is discarded in this process and
only the magnitude of each DFT point is used. The scalar output from each dot product
corresponding to each of the m filters applied to a single frame are then concatenated
together to form one m−dimensional frame of the output Mel-scale spectrogram, or simply
Mel-spectrogram [53].

Finally, as a practical consideration, the values of these Mel-spectrograms can become
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Figure C.1: Impulse response of Mel-scale discrete triangular filters for m = 80 uniformly
spaced Mel-scale frequency bins between 0 Hz and 8000 Hz. Each of the 80 discrete filters
is constructed to be applied to each frame of a STFT utilizing a 1024-point DFT. Each
triangular filter is shown in a separate color, indicating the magnitude of the triangular
filter for each DFT index.

large enough in magnitude to cause instability for some machine learning methods. Thus,
typically VC systems prefer to use the log Mel-spectrogram, which is simply the (possibly
natural) logarithm of the Mel-spectrogram magnitudes [12].

C.3. Other frequency-domain representations
As mentioned, there are several other possible ways to represent the frequency content of
speech. For example, some VC systems use Mel-frequency cepstral coefficients (MFCCs)
which consists of further processing a Mel-spectrogram using a discrete cosine transform [53].
Meanwhile, others use the WORLD feature extractor which represents an utterance as a
3-tuple of pitch, aperiodicity, and spectral envelope sequences [19].



Appendix D

Training software and setup
supplement
This appendix describes detailed supplementary information for how each model is trained
in software, and the precise method used during data loading, model definition, and
training.

D.1. Software and tooling detail
The first is the Pytorch machine learning framework, which provides a useful Python
interface to define DNNs, manipulate tensors of arbitrary rank, and train DNNs by
automatically computing the loss gradients with respect to arbitrary parameters by
carefully recording the computation path leading to the loss (or any other variable the
user wishes to take the derivative off) in a process known as backpropagation [27]. We use
Pytorch to define each model, and to manually perform various operations on tensors.

The second library used is the librosa audio processing library, which is a fairly standard
library in the literature for extracting features from and processing audio. We use it to
aid in constructing and displaying Mel-spectrograms [53].

The third major library used is the Fastai deep learning framework [49]. It is a library
that sits atop Pytorch to offer additional functionality, such as various data transform,
loading, and training utilities. We use it to build the Python constructs which parses and
loads each batch of data to the models, and to perform the actual training loop.

Furthermore, training and experimentation is performed and data is loaded in Jupyter
notebooks, which provide a rich interactive IDE experience for editing interpreted languages
such as Python. After pieces of code were verified to work in a Jupyter notebook, they
are mostly offloaded to python files to be imported when needed.

For hardware, all training and speed measurements are performed on a single NVIDIA
RTX 2070 SUPER graphics processing unit (GPU). This is done because NVIDIA offers
special hardware libraries to Pytorch that drastically speeds up tensor computations on
GPUs compared to standard central processing units (CPUs).

D.2. Training loop detail

D.2.1. Non-GAN methods
The process to train each non-GAN model is nearly identical: we follow the abstract
four-step training loop defined in Section 2.3.2 with a batch size of 8 for all models execpt
AutoVC, which requires a smaller batch size of 4 as per the author’s experiments [9]. The
optimizer (weight update equation in the final step) is defined as the Adam optimizer [21]
whereby the running gradient average m̃1 updates with momentum 0.9, and the square
gradient running average m̃2 updates with momentum 0.99.
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The stability constant is set at ε = 10−5, and we also add an L2 weight penalty with
coefficient λ = 0.01 to help regularize the model [27]. The precise details of this weight
decay are similar to those used for logistic regression when a prior over the weight is
assumed, however the details of how this weight decay interfaces with the standard Adam
update step is beyond the scope of this project.

The last aspect of training that needs clarification is the learning rate and duration of
training. For this, we use the method developed by Smith [54] and expended by Smith
in [58]. In this method we follow a special procedure to determine a good learning rate α
before we train the network. Formally we run several batches through the network with a
exponentially growing learning rates from some minimum αmin (10−7 in our experiments),
computing the loss and updating the weights each step. The loss is plotted against the
learning rate, and this process is continued until the loss begins to diverge.

The optimal loss is then read off from the plot at the point where the loss decreases
the fastest. The weights are then reset to their value before this process, and standard
training proceeds using this determined learning rate. To train each non-GAN model, we
perform this process to obtain a good α, train for several hundred epochs using a one-cycle
learning rate scheduler based on this α as defined by Smith [58]. We then repeat these
steps until the loss on the validation set converges.

The theoretical motivations provided by Smith for finding a good learning rate and the
details of the one-cycle scheduler are beyond the scope of this project. They were chosen
after a lengthy period of trial and error among several methods, whereby we found these
methods by Smith (and functionality provided in Fastai) consistently yielded good results
in our experiments.

D.2.2. GAN-based methods
Training StarGAN-VC2 and StarGAN-ZSVC followed instead the training loop given in
Algorithm 2.1 with the StarGAN adaptation defined in Section 2.3.6 and using a batch
size of 8. The Adam optimizer used is the same as for the non-GAN methods, except
with the square gradient update momentum set at 0.5 to ensure that the generator or
discriminator never starts to overpower the other.

Instead of using the method by Smith for training, for the GAN models we simply train
for several thousand epochs at a learning rate of α = 2 × 10−4 until the validation loss
begins to increase. However, GANs are known to be somewhat difficult to train and we
needed to make several special additions to the training process to produce good results:
• The gradients ∇θG

and ∇θD
are clipped to have a maximum L2 norm of 1.

• The discriminator’s learning rate is made to always be half of the generator’s learning
rate.
• The number k from Algorithm 2.1 is updated every several hundred epochs to

ensure that the discriminator’s loss is always roughly a factor of 10 lower than the
adversarial term of the generator’s loss (LG−adv).
• A dropout layer is added to the input of the discriminator with probability 0.3 after

the first 3000 epochs (if added sooner it causes artifacts and destabilizes training, if
not added the generator begins to experience mode collapse).

For the LSGAN constants we set a = 1 and b = 0. For the loss coefficients we set λcyc = 10,
λid = 5, with λid being adjusted exponentially downwards during training until λid = 0.01
by epoch 4000. We found these settings to yield good results.



Appendix E

Experiment hurdles
Herewith we provide a list of experiments attempting to use various techniques or implement
various changes to successfully train each VC model.

Table E.1: Attempts used to overcome hurdles in training StarGAN-VC2 (and thus
StarGAN-ZSVC) successfully, along with the outcome and explanation of each experiment.

Solution attempt Outcome Suspected explanation

Original paper specifies Adam momentum as 0.5, but
unclear if it is momentum for gradient and square gra-
dient term. Attempt to set both momenta to 0.5.

Failure Model fails to train at all, must be only gradient mo-
mentum.

Change target speaker sampling to assign lower proba-
bilities to source speaker so that speaker A → A map-
ping is less common.

Little
effect

A → A mapping must already be sufficiently optimized
by the identity and cyclic loss terms.

Experiment with changing loss function coefficients to
make each term (numerically) roughly the same size.

Failure Model appears to need the cyclic loss term to have much
higher magnitude, probably because its gradients travel
backwards much farther and appear to vanish more.

Change how CIN weights initialized to get γ = 1, β = 1
so as to initialize with identity mapping.

Failure Does not improve training, perhaps the random initial-
ization is good because it provides richer gradients.

Train generator with only cyclic and identity loss terms
to check software framework.

Success The generator does indeed learn to successfully perform
identity mappings (speaker A→ A conversios), and thus
software framework likely works.

To get D to work for arbitrary sized inputs, change
GSP layer for a traditional sum or average pooling over
channels.

Failure Sum pooling fails as tensor mean changes based on
length of utterance, average pooling fails as long silences
drastically affects tensor mean.

Attempt to switch between training D and G using an
adaptive GAN switcher [49], which switches between
D and G as their loss decreases to a fixed point.

Failure The training process for the GAN is very non-linear,
and sometimes both D and G’s loss will increase by a
factor of 3 yet produce better results. So setting a fixed
loss point to switch between optimizing D and G did
not work.

Pretrain G using non-adversarial loss terms to speed
up training.

Little
effect

Does not significantly speed up training, likely as pre-
training does not helpG learn actual A→B speaker map-
pings.

Try bound D output with a non-linearity such as sig-
moid or softplus to aid it learn to output near LSGAN
a and b.

Failure It appears to not learn at all now. Perhaps forcing it to
output small values without non-linearity helps regular-
ize the magnitude of the weights.

Apply gradient clipping to G and D. Success Improves training stability.
Scale gradient of embedding layers in StarGAN-VC2
by frequency of embedding use.

Failure Appears to not produce a significant change, if not
slightly worsening output and increasing number of pa-
rameters.

Add weight decay to training. Marginal
im-
prove-
ment

Slight improvement from increased regularization, we
suspect that D already is strongly regularized by forcing
its unbounded output to be small.

Use different configurations with instance normaliza-
tion layers recording a running average of statistics.

Mixed Appears to help at inference, but fails during training
as the statistics of a poorly trained cyclical mapping is
far from that of a real Mel-spectrogram.

Initialize StarGAN-VC2 embedding layers with Fas-
tai’s truncated normal initialization.

Success Drastically improves speed of training, due to lots of un-
derlying theory about DNN initialization that is beyond
the scope of this project.

Completely drop the Lid term after 3000 epochs as per
original paper.

Failure Model begins to fail at identity mappings after the loss
term is removed, rather keep it but with lower coefficient
as training proceeds.

Use Adam with zero momentum as in other popular
GAN implementations.

Little
effect

Seemed to increase stability slightly, but slowed down
convergence as well.
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Table E.2: Various techniques used to overcome the hurdle of training the speaker
embedding model successfully, along with the outcome and explanation of each experiment.

Solution attempt Outcome Suspected explanation

Use initial model defined in AutoVC with LSTMs Marginal
failure

Model is rather slow using LSTMs, but still largely
works.

Attempt to add various forms of dropout as in Fastai’s
AWD LSTM [49] implementation (weight dropout, cell
state dropout...)

Little
effect

With the large amount of data (roughly 2 hours per
epoch) available to train the GE2E model, adding all
the dropout appears to just slow down training slightly.

Switch to GRU cells instead of LSTM cells. Success Performance similar and speed improved moderately.
Attempt to scale the input according to Section 4.3. Failure Reduced performance, possibly because GRU cells use

substantial amounts of sigmoid non-linearities which al-
ready bounds values between zero and one.

Attempt to directly perform VC by freezing trained
GE2E model and treating an input spectrogram Xsrc
as the trainable parameters θ, and directly attempt to
minimize the loss ||E(Xsrc)− strg||2 by optimizing the
actual values of the spectrogram.

Failure In the end the learnt spectrogram becomes purely an
adversarial attack on E to make E(X) very close to a
desired speaker embedding without changing the spec-
trogram in a semantically meaningful way.

Attempt to perform the same direct optimization de-
scribed in the previous entry but with other loss func-
tions between E(X) and the desired strg, such as KL
divergence.

Failure Still no meaningful results, likely still performing an
adversarial attack on E(X). Some anti-adversarial at-
tack measures might be required to make this technique
work.

Table E.3: Tooling, hardware, and software issues encountered and attempted solutions,
along with outcomes and suspected explanation for each outcome.

Solution attempt Outcome Suspected explanation

Use the WORLD vocoder for experiments since it does
not require training (good for low-resource).

Failure By representing utterances as 3-tuples, it requires con-
version of 3 separate signals, which is non-trivial and all
existing systems utilize the mean pitch information of
target speakers – not a variable obtainable in a zero-shot
setting.

We encountered CUDNN STATUS BAD PARAM errors at ar-
bitrary times during training when loading a batch.
Upon investigation, the SATA cable between the SSD
and motherboard was found to have one pin corrupted.
Replace SATA cable.

Success No further arbitrary CUDNN errors when loading
batches.

We encountered CUDNN STATUS BAD PARAM errors at ar-
bitrary times when gradients were backpropogated
through an LSTM or GRU layer whose parameters
were not being trained. Upon investigation, it was
hypothesised that this was a low-level Windows issue
with how it interfaces with CUDA. Solution: switch to
Ubuntu Linux.

Success No further CUDA errors during training.

Table E.4: AutoVC training issues encountered and attempted solutions, along with
outcomes and suspected explanation for each outcome.

Solution attempt Outcome Suspected explanation

Attempt to train model with initial WaveNet vocoder
to try replicate exact results of authors.

Failure WaveNet vocoder is very slow (15s to vocode 1s of au-
dio).

Training appeared to be failing, so we applied scaling
to the input as defined in Section 4.3.

Success Training more smooth as is often the case when scaling
input.
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Table E.5: StarGAN-ZSVC training issues encountered and attempted solutions, along
with outcomes and suspected explanation for each outcome.

Solution attempt Outcome Suspected explanation

The model apperas to experience mode collapse after
a long time of training. Try add dropout to the dis-
criminator input spectrogram.

Failure The discriminator fails to ever train properly, and intro-
duces weird artifacts into the generated results. The
likely cause is that the mean tensor value changes
slightly, which affects the discriminator output through
the global sum pooling layer.

Use dropout to input of D, but only add the dropout
after several thousand epochs once both D and G are
reasonably good.

Success No mode collapse or artifacts arise during training.

Try out different non-linearities for the layers operating
on the speaker embeddings (SELU, ReLU, Softplus...)

Mixed SELU yielded the best results on validation set (faster
training and slightly better results).

Add additional loss term akin to AutoVC, minimizing
L1 distance between E(Xsrc→trg) and strg.

Mixed Model appears to be training slightly better and results
look promising, but adding this loss term slows down
training too much to be feasable, thus we discard this
change.

Try utilize different pooling layers instead of global
sum pooling in discriminator to allow arbitrary length
inputs.

Failure All other pooling types causes the dot product to yield
high variance outputs when utterances are of varying
length. Thus rather stick with global sum pooling and
fixed-size spectrograms.

Use different scales for learning rate (such as mak-
ing the discriminator’s learning rate 4x the generator’s
learning rate).

Mixed Most choices immediately cause training to diverge, and
ultimately setting the discriminator’s learning rate to
half the generator’s learning rate worked consistently
well.



Appendix F

Subjective evaluation data

This appendix includes configuration information for the subjective evaluation survey and
converted sample spectrograms for each model to provide the reader with an additional
visual means to assess each model’s performance.

F.1. Subjective evaluation survey breakdown
Each listener listens to 100 utterances given in random order with randomized filenames.
The 100 utterances are comprised of the following:
• 8 random true source utterances (purely giving them the raw waveform X ).
• 8 random vocoded source utterances (taking the spectrogram of a true utterance X

and then using the WaveGlow vocoder to convert it back to a waveform X ).
• 8 random converted utterances from StarGAN-ZSVC’s seen-to-seen test set.
• 8 random converted utterances from StarGAN-ZSVC’s seen-to-unseen test set.
• 8 random converted utterances from StarGAN-ZSVC’s unseen-to-seen test set.
• 8 random converted utterances from StarGAN-ZSVC’s unseen-to-unseen test set.
• 8 random converted utterances from AutoVC’s seen-to-seen test set.
• 8 random converted utterances from AutoVC’s seen-to-unseen test set.
• 8 random converted utterances from AutoVC’s unseen-to-seen test set.
• 8 random converted utterances from AutoVC’s unseen-to-unseen test set.
• 8 random converted utterances for StarGAN-VC2’s seen-to-seen test set.
• all 4 converted utterances for the linear model’s test set (recall these must convert

from SF1 to SM2).
• all 4 converted utterances for the DBLSTM model’s test set.
• all 4 converted utterances for the UNet model’s test set.

This setup allows for all possible seen/unseen comparisons and provides a baseline MOS
for both raw and vocoded source waveforms from the dataset.

F.2. Converted spectrogram samples
This section provides a handful of converted sample (log Mel-scale) spectrograms for each
model, along with the ground-truth target spectrogram and source spectrogram. In all of
the following figures each row corresponds to one VC sample, with the input spectrogram in
the left column, ground-truth target in the middle column, and the converted spectrogram
for the model in question in the right column.

63



F.2. Converted spectrogram samples 64

VCC2SF1 utterance 10004 VCC2SM2 utterance 10004 Output VCC2SF1/10004→VCC2SM2

VCC2SF1 utterance 10043 VCC2SM2 utterance 10043 Output VCC2SF1/10043→VCC2SM2

VCC2SF1 utterance 10015 VCC2SM2 utterance 10015

Input spectrogram Xsrc Target spectrogram Xtrg Output spectrogram Xsrc→ trg

Output VCC2SF1/10015→VCC2SM2

Figure F.1: Linear model conversion samples for one-to-one conversion from speaker
SF1 to speaker SM2.

VCC2SF1 utterance 10004 VCC2SM2 utterance 10004 Output VCC2SF1/10004→VCC2SM2

VCC2SF1 utterance 10043 VCC2SM2 utterance 10043 Output VCC2SF1/10043→VCC2SM2

VCC2SF1 utterance 10015 VCC2SM2 utterance 10015

Input spectrogram Xsrc Target spectrogram Xtrg Output spectrogram Xsrc→ trg

Output VCC2SF1/10015→VCC2SM2

Figure F.2: UNet model conversion samples for one-to-one conversion from speaker SF1
to speaker SM2.

VCC2SF1 utterance 10004 VCC2SM2 utterance 10004 Output VCC2SF1/10004→VCC2SM2

VCC2SF1 utterance 10043 VCC2SM2 utterance 10043 Output VCC2SF1/10043→VCC2SM2

VCC2SF1 utterance 10015 VCC2SM2 utterance 10015

Input spectrogram Xsrc Target spectrogram Xtrg Output spectrogram Xsrc→ trg

Output VCC2SF1/10015→VCC2SM2

Figure F.3: DBLSTM conversion samples for one-to-one conversion from speaker SF1
to speaker SM2.
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VCC2SF2 utterance 10025 VCC2SF1 utterance 10025 Output VCC2SF2/10025→VCC2SF1

VCC2SF1 utterance 10012 VCC2SM1 utterance 10012 Output VCC2SF1/10012→VCC2SM1

VCC2SF1 utterance 10037 VCC2SF2 utterance 10037

Input spectrogram Xsrc Target spectrogram Xtrg Output spectrogram Xsrc→ trg

Output VCC2SF1/10037→VCC2SF2

Figure F.4: StarGAN-VC2 conversion samples for seen-to-seen conversion task from
arbitrary training speakers to arbitrary training speakers.

VCC2SM2 utterance 10001 VCC2SF1 utterance 10001 Output VCC2SM2/10001→VCC2SF1

VCC2SF2 utterance 10004 VCC2SM1 utterance 10004 Output VCC2SF2/10004→VCC2SM1

VCC2SM2 utterance 10062 VCC2SM1 utterance 10062

Input spectrogram Xsrc Target spectrogram Xtrg Output spectrogram Xsrc→ trg

Output VCC2SM2/10062→VCC2SM1

Figure F.5: StarGAN-ZSVC conversion samples for seen-to-seen conversion task from
arbitrary training speakers to arbitrary training speakers.

VCC2SM2 utterance 10001 VCC2SF1 utterance 10001 Output VCC2SM2/10001→VCC2SF1

VCC2SF2 utterance 10004 VCC2SM1 utterance 10004 Output VCC2SF2/10004→VCC2SM1

VCC2SM2 utterance 10062 VCC2SM1 utterance 10062

Input spectrogram Xsrc Target spectrogram Xtrg Output spectrogram Xsrc→ trg

Output VCC2SM2/10062→VCC2SM1

Figure F.6: AutoVC converksion samples for seen-to-seen conversion task from arbitrary
training speakers to arbitrary training speakers.
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VCC2TM1 utterance 10047 VCC2TF2 utterance 10047 Output VCC2TM1/10047→VCC2TF2

VCC2TF2 utterance 10001 VCC2TF1 utterance 10001 Output VCC2TF2/10001→VCC2TF1

VCC2TF2 utterance 10062 VCC2TM1 utterance 10062

Input spectrogram Xsrc Target spectrogram Xtrg Output spectrogram Xsrc→ trg

Output VCC2TF2/10062→VCC2TM1

Figure F.7: AutoVC conversion samples for the unseen-to-unseen zero-shot conversion
task.

VCC2TM1 utterance 10047 VCC2TF2 utterance 10047 Output VCC2TM1/10047→VCC2TF2

VCC2TF2 utterance 10001 VCC2TF1 utterance 10001 Output VCC2TF2/10001→VCC2TF1

VCC2TF2 utterance 10062 VCC2TM1 utterance 10062

Input spectrogram Xsrc Target spectrogram Xtrg Output spectrogram Xsrc→ trg

Output VCC2TF2/10062→VCC2TM1

Figure F.8: StarGAN-ZSVC conversion samples for the unseen-to-unseen zero-shot
conversion task.


